969 resultados para Donor-acceptor
Resumo:
The synthesis and photophysical properties of the complex Fe(phen)(2)(TTF-dppz)(2+) (TTF-dppz = 4',5'-bis-(propylthio)tetrathiafulvenylidipyrido3,2-a:2',3'-c-phenazine, phen = 1,10-phenanthroline) are described. In this complex, excitation into the metal ligand charge transfer bands results in the population of a high-spin state of iron(II), with a decay lifetime of approximately 1.5 ns, in dichloromethane, at room temperature. An intraligand charge transfer state can also be obtained and has a lifetime of 38 ps. A mechanism for the different states reached is proposed based on transient absorption spectroscopy.
Resumo:
Rigid electron donor-acceptor conjugates (1-3) that combine -extended benzodifurans as electron donors and C-60 molecules as electron acceptors with different linkers have been synthesized and investigated with respect to intramolecular charge-transfer events. Electrochemistry, fluorescence, and transient absorption measurements revealed tunable and structure-dependent charge-transfer processes in the ground and excited states. Our experimental findings are underpinned by density-functional theory calculations.
Resumo:
A pi-conjugated tetrathiafulvalene-fused perylenediimide (TTF-PDI) molecular dyad is successfully used as a solution-processed active material for light sensitive ambipolar field-effect transistors with balanced hole and electron mobilities. The photo-response of the TTF-PDI dyad resembles its absorption profile. Wavelength-dependent photoconductivity measurements reveal an important photo-response at an energy corresponding to a PDI-localized electronic pi-pi* transition and also a more moderate effect due to an intramolecular charge transfer from the HOMO localized on the TTF unit to the LUMO localized on the PDI moiety. This work clearly elucidates the interplay between intra- and intermolecular electronic processes in organic devices.
Resumo:
Electrochemical and photophysical analysis of new donoracceptor systems 2 and 3, in which a benzothiadiazole (BTD) unit is covalently linked to a tetrathiafulvalene (TTF) core, have verified that the lowest excited state can be ascribed to an intramolecular-charge-transfer (ICT) (TTF)*(benzothiadiazole) transition. Owing to better overlap of the HOMO and LUMO in the fused scaffold of compound 3, the intensity of the 1ICT band is substantially higher compared to that in compound 2. The corresponding CT fluorescence is also observed in both cases. The radical cation TTF+. is easily observed through chemical and electrochemical oxidation by performing steady-state absorption experiments. Interestingly, compound 2 is photo-oxidized under aerobic conditions.
Resumo:
In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).
Resumo:
Electron donor-acceptor (EDA) interactions are widely involved in chemistry and their understanding is essential to design new technological applications in a variety of fields ranging from material sciences and chemical engineering to medicine. In this work, we study EDA complexes of carbon dioxide with ketones using several ab initio and Density Functional Theory methods. Energy contributions to the interaction energy have been analyzed in detail using both variational and perturbational treatments. Dispersion energy has been shown to play a key role in explaining the high stability of a non-conventional structure, which can roughly be described by a cooperative EDA interaction.
Resumo:
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L-3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraaza-cyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2](2+) (Chart 1). By contrast, Stern-Volmer analysis of intermolecular quenching of [ZnL2](2+) by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.
Resumo:
Interaction of tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE) with few-layer graphene samples prepared by the exfoliation of graphite oxide (EG), conversion of nanodiamond (DG) and arc-evaporation of graphite in hydrogen (HG) has been investigated by Raman spectroscopy to understand the role of the graphene surface. The position and full-width at half maximum of the Raman G-band are affected on interaction with TTF and TCNE and the effect is highest with EG and least with HG. The effect of TTF and TCNE on the 2D-band is also maximum with EG. The magnitude of interaction between the donor/acceptor molecules varies in the same order as the surface areas of the graphenes. (C) 2009 Published by Elsevier B. V.