930 resultados para Dna-sequences
Resumo:
The purpose of this study was to examine the relationship of immunoglobulin genes, more specifically the C regions, to the inverted repetitive sequences found in the mouse genome. Total mRNA as well as mRNA for light chain kappa was purified from mouse plasmacytoma MOPC 321 cells. Complementary DNA molecules were synthesized from the mRNA templates and hybridized to DNA fractionated on hydroxyapatite columns. This fractionation separates DNA according to the presence of inverted repetitive sequences which will be retained by hydroxyapatite while the remaining fraction will be unbound.^ The results obtained during the course of this investigation suggested the following conclusions. Firstly, it was shown that inverted sequences were not found within the transcribed DNA region. Secondly, inverted sequences are not found within the kappa gene. And finally, it was shown that the inverted sequences may not be representative of all the sequences found in MOPC 321 DNA. ^
Resumo:
We analyzed brain tissue from 39 patients for the presence of proviral HIV-1 sequences, using the polymerase chain reaction (PCR) for the amplification of segments of the viral LTR and gag genes. A novel primer extension procedure allowed the detection of a single HIV-1 copy in 1 micrograms DNA. We detected proviral HIV-1 DNA in 16 of 25 brain samples from AIDS patients. Semiquantitative evaluation of the amplified DNAs indicated considerable variation in viral load. Highest levels of proviral DNA were present in brain samples from six patients with clinical evidence of HIV-associated cognitive/motor complex and the histopathologic correlate of HIV leukoencephalopathy or HIV encephalitis. An additional 11 brain samples contained smaller amounts of proviral DNA. In these patients, clinical data were inconclusive regarding the diagnosis of HIV-1 encephalopathy and histopathologically there was no evidence of HIV-1-induced tissue lesions. In nine of 25 seropositive patients with AIDS (36%), brain samples scored negative or did not contain an unequivocal signal indicating the presence of proviral DNA. HIV-1 sequences were not detected in any of 14 control brain samples from HIV-1 seronegative patients. Our data indicate that HIV-1 is present in the central nervous system of the majority (two thirds) of AIDS patients and that the highest levels of proviral DNA in brain tissue are associated with HIV encephalopathy.
Resumo:
With the aim of understanding the mechanism of molecular evolution, mathematical problems on the evolutionary change of DNA sequences are studied. The problems studied and the results obtained are as follows: (1) Estimation of evolutionary distance between nucleotide sequences. Studying the pattern of nucleotide substitution for the case of unequal substitution rates, a new mathematical formula for estimating the average number of nucleotide substitutions per site between two homologous DNA sequences is developed. It is shown that this formula has a wider applicability than currently available formulae. A statistical method for estimating the number of nucleotide changes due to deletion and insertion is also developed. (2) Biases of the estimates of nucleotide substitutions obtained by the restriction enzyme method. The deviation of the estimate of nucleotide substitutions obtained by the restriction enzyme method from the true value is investigated theoretically. It is shown that the amount of the deviation depends on the nucleotides in the recognition sequence of the restriction enzyme used, unequal rates of substitution among different nucleotides, and nucleotide frequences, but the primary factor is the unequal rates of nucleotide substitution. When many different kinds of enzymes are used, however, the amount of average deviation is generally small. (3) Distribution of restriction fragment lengths. To see the effect of undetectable restriction fragments and fragment differences on the estimate of nucleotide differences, the theoretical distribution of fragment lengths is studied. This distribution depends on the type of restriction enzymes used as well as on the relative frequencies of four nucleotides. It is shown that undetectability of small fragments or fragment differences gives a serious underestimate of nucleotide substitutions when the length-difference method of estimation is used, but the extent of underestimation is small when the site-difference method is used. (4) Evolutionary relationships of DNA sequences in finite populations. A mathematical theory on the expected evolutionary relationships among DNA sequences (nucleons) randomly chosen from the same or different populations is developed under the assumption that the evolutionary change of nucleons is determined solely by mutation and random genetic drift. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author). UMI ^
Resumo:
The pattern of expression of the pro$\alpha$2(I) collagen gene is highly tissue-specific in adult mice and shows its strongest expression in bones, tendons, and skin. Transgenic mice were generated harboring promoter fragments of the mouse pro$\alpha$2(I) collagen gene linked to the Escherichia coli $\beta$-galactosidase or firefly luciferase genes to examine the activity of these promoters during development. A region of the mouse pro$\alpha$2(I) collagen promoter between $-$2000 and +54 exhibited a pattern of $\beta$-galactosidase activity during embryonic development that corresponded to the expression pattern of the endogenous pro$\alpha$2(I) collagen gene as determined by in situ hybridization. A similar pattern of activity was also observed with much smaller promoter fragments containing either 500 or 350 bp of upstream sequence relative to the start of transcription. Embryonic regions expressing high levels of $\beta$-galactosidase activity included the valves of the developing heart, sclerotomes, meninges, limb buds, connective tissue fascia between muscle fibers, osteoblasts, tendon, periosteum, dermis, and peritoneal membranes. The pattern of $\beta$-galactosidase activity was similar to the extracellular immunohistochemical localization of transforming growth factor-$\beta$1 (TGF-$\beta$1). The $-$315 to $-$284 region of the pro$\alpha$2(I) collagen promoter was previously shown to mediate the stimulatory effects of TGF-$\beta$1 on the pro$\alpha$2(I) collagen promoter in DNA transfection experiments with cultured fibroblasts. A construct containing this sequence tandemly repeated 5$\sp\prime$ to both a very short $\alpha$2(I) collagen promoter ($-$40 to +54) and a heterologous minimal promoter showed preferential activity in tail and skin of 4-week old transgenic mice. The pattern of expression mimics that of the $-$350 to +54 pro$\alpha$2(I) collagen promoter linked to a luciferase reporter gene in transgenic mice. ^
Resumo:
Homobasidiomycete fungi display many complex fruiting body morphologies, including mushrooms and puffballs, but their anatomical simplicity has confounded efforts to understand the evolution of these forms. We performed a comprehensive phylogenetic analysis of homobasidiomycetes, using sequences from nuclear and mitochondrial ribosomal DNA, with an emphasis on understanding evolutionary relationships of gilled mushrooms and puffballs. Parsimony-based optimization of character states on our phylogenetic trees suggested that strikingly similar gilled mushrooms evolved at least six times, from morphologically diverse precursors. Approximately 87% of gilled mushrooms are in a single lineage, which we call the “euagarics.” Recently discovered 90 million-year-old fossil mushrooms are probably euagarics, suggesting that (i) the origin of this clade must have occurred no later than the mid-Cretaceous and (ii) the gilled mushroom morphology has been maintained in certain lineages for tens of millions of years. Puffballs and other forms with enclosed spore-bearing structures (Gasteromycetes) evolved at least four times. Derivation of Gasteromycetes from forms with exposed spore-bearing structures (Hymenomycetes) is correlated with repeated loss of forcible spore discharge (ballistospory). Diverse fruiting body forms and spore dispersal mechanisms have evolved among Gasteromycetes. Nevertheless, it appears that Hymenomycetes have never been secondarily derived from Gasteromycetes, which suggests that the loss of ballistospory has constrained evolution in these lineages.
Resumo:
Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying mechanisms of these rearrangements. We present evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome exchange-associated slippage, and single-strand annealing. We discuss the constraints of these mechanisms and contrast their properties with RecA-dependent homologous recombination. Replication plays a critical role in the two slipped misalignment mechanisms, and difficulties in replication appear to trigger rearrangements via all these mechanisms.
Resumo:
The free energy difference between complexes of the restriction nuclease EcoRI with nonspecific DNA and with the enzyme's recognition sequence is linearly dependent on the water chemical potential of the solution, set using several very different solutes, ranging from glycine and glycerol to triethylene glycol and sucrose. This osmotic dependence indicates that the nonspecific complex sequesters some 110 waters more than the specific complex with the recognition sequence. The insensitivity of the difference in number of waters released to the solute identity further indicates that this water is sequestered in a space that is sterically inaccessible to solutes, most likely at the protein-DNA interface of the nonspecific complex. Calculations based on the structure of the specific complex suggest that the apposing DNA and protein surfaces in the nonspecific complex retain approximately a full hydration layer of water.
Resumo:
Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group.
Resumo:
DNA sequences of neutral nuclear autosomal loci, compared across diverse human populations, provide a previously untapped perspective into the mode and tempo of the emergence of modern humans and a critical comparison with published clonally inherited mitochondrial DNA and Y chromosome measurements of human diversity. We obtained over 55 kilobases of sequence from three autosomal loci encompassing Alu repeats for representatives of diverse human populations as well as orthologous sequences for other hominoid species at one of these loci. Nucleotide diversity was exceedingly low. Most individuals and populations were identical. Only a single nucleotide difference distinguished presumed ancestral alleles from descendants. These results differ from those expected if alleles from divergent archaic populations were maintained through multiregional continuity. The observed virtual lack of sequence polymorphism is the signature of a recent single origin for modern humans, with general replacement of archaic populations.
Resumo:
A new method for computing evolutionary distances between DNA sequences is proposed. Contrasting with classical methods, the underlying model does not assume that sequence base compositions (A, C, G, and T contents) are at equilibrium, thus allowing unequal base compositions among compared sequences. This makes the method more efficient than the usual ones in recovering phylogenetic trees from sequence data when base composition is heterogeneous within the data set, as we show by using both simulated and empirical data. When applied to small-subunit ribosomal RNA sequences from several prokaryotic or eukaryotic organisms, this method provides evidence for an early divergence of the microsporidian Vairimorpha necatrix in the eukaryotic lineage.
Resumo:
Coiled bodies (CBs) are nuclear organelles whose structures appear to be highly conserved in evolution. In rapidly cycling cells, they are typically located in the nucleoplasm but are often found in contact with the nucleolus. The CBs in human cells contain a unique protein, called p80-coilin. Studies on amphibian oocyte nuclei have revealed a protein within the "sphere" organelle that shares significant structural similarity to p80-coilin. Spheres and CBs are also highly enriched in small nuclear ribonucleoproteins and other RNA-processing components. We present evidence that, like spheres, CBs contain U7 small nuclear RNA (snRNA) and associate with specific chromosomal loci. Using biotinylated 2'-O-methyl oligonucleotides complementary to the 5' end of U7 snRNA and fluorescence in situ hybridization, we show that U7 is distributed throughout the nucleoplasm, excluding nucleoli, and is concentrated in CBs. Interestingly, we found that CBs often associate with subsets of the histone, U1, and U2 snRNA gene loci in interphase HeLa-ATCC and HEp-2 monolayer cells. However, in a strain of suspension-grown HeLa cells, called HeLa-JS1000, we found a much lower rate of association between CBs and snRNA genes. Possible roles for CBs in the metabolism of these various histone and snRNAs are discussed.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Representational difference analysis (RDA) has great potential for preferential amplification of unique but uncharacterised DNA sequences present in one source such as a whole genome, but absent from a related genome or other complex population of sequences. While a few examples of its successful exploitation have been published, the method has not been well dissected and robust, detailed published protocols are lacking. Here we examine the method in detail, suggest improvements and provide a protocol that has yielded key unique sequences from a pathogenic bacterial genome. © 2003 Elsevier Science B.V. All rights reserved.