933 resultados para Dissociation constant


Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. The aim of the present study was to examine the effects of long-term nitric oxide (NO) blockade on contractions of the rat ileum induced by muscarinic agonists.2. Male Wistar rats received the NO synthesis inhibitor N (G) -nitro-l-arginine methyl ester (l-NAME; 20 mg/rat per day) in drinking water for 7, 15, 30 and 60 days. Concentration-responses curves to methacholine and carbachol were obtained and pEC(50) values were calculated. Saturation binding assays were performed in membranes prepared from rat ileum after 60 days of l-NAME treatment and the dissociation constant (K-D ) and maximal number of binding sites (B-max ) were determined by Scatchard analysis.3. The NO synthase activity of the ileum was markedly reduced in all l-NAME-treated groups. At 60 days after l-NAME treatment, a significant increase in the potency of methacholine (fourfold) and carbachol (threefold) was observed. In binding studies, we found a significant increase in B-max for [(3) H]-quinuclidinyl benzilate of approximately 57% in the l-NAME treated group without any significant change in K-D values. The contractile response to methacholine was not modified by the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (3 mumol/L). No morphological alterations in the rat ileum were observed in l-NAME-treated rats.4. Our findings suggest that treatment with l-NAME for 60 days induces a marked increase in the potency of methacholine and carbachol, as well as an increase in receptor number in the rat ileum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective was to estimate alterations in adrenergic receptor sites of guinea pig vas deferens, in vivo and in vitro, induced by chronic denervation. The denervation process induced an increased sensitivity (3-fold at the EC50 level) without alteration in the maximum response to phenylephrine in vitro. The sensitivity alteration was characterized by the decrease in the dissociation constant of phenylephrine for alpha-adrenoceptor [K-A: normal tissue 3.50 (0.75-16.21) x 10(-5) and denervated tissue 0.43 (0.11-1.67) x 10(-5) M, p < 0.05] without changing the dissociation constant of prazosin. A decrease in pD(2)' value for phenylephrine-phenoxybenzamine, probably due to a qualitative rather than a quantitative alteration in the alpha-adrenoceptor, was also shown in vitro [pD(2)': normal tissue (8.2776 +/- 0.0402) and denervated tissue (8.0051 +/- 0.0442), p < 0.05]. No change in sensitivity and maximum response to phenylephrine was observed in vivo after denervation, although an increased resistance of vas deferens to phenoxybenzamine blockade has been evidenced in this condition. (C) 1999 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have examined the binding processes of ethidium bromide interacting with calf thymus DNA using photoacoustic spectroscopy. These binding processes are generally investigated by a combination of absorption or fluorescence spectroscopies with hydrodynamic techniques. The employment of photoacoustic spectroscopy for the DNA-ethidium bromide system identified two binding manners for the dye. The presence of two isosbestic points (522 and 498 nm) during DNA titration was evidence of these binding modes. Analysis of the photoacoustic amplitude signal data was performed using the McGhee-von Hippel excluded site model. The binding constant obtained was 3.4 x 10(8) M(bp)(-1), and the number of base pairs excluded to another dye molecule by each bound dye molecule (n) was 2. A DNA drug dissociation process was applied using sodium dodecyl sulfate to elucidate the existence of a second and weaker binding mode. The dissociation constant determined was 0.43 mM, whose inverse value was less than the previously obtained binding constant, demonstrating the existence of the weaker binding mode. The calculated binding constant was adjusted by considering the dissociation constant and its new value was 1.2 x 10(9) M(bp)(-1) and the number of excluded sites was 2.6. Using the photoacoustic technique it is also possible to obtain results regarding the dependence of the quantum yield of the dye on its binding mode. While intercalated between two adjacent base pairs the quantum yield found was 0.87 and when associated with an external site it was 0.04. These results reinforce the presence of these two binding processes and show that photoacoustic spectroscopy is more extensive than commonly applied spectroscopies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intra- and intermolecular rates of degradation of cephaclor were determined with and without hexadecyltrimethylammonium bromide (CTABr). Micellar-derived spectral shifts were used to measure the association of the ionic forms as well as to determine the effect of CTABr on the apparent acid dissociation constant of the antibiotic. The rate of degradation of cephaclor increased with detergent and was salt sensitive. Micellar effects were analyzed quantitatively within the frame-work of the speudophase ion exchange model. All experimental data were fitted to this model which was used to predict the combined effects of pH and detergent concentration. Micelles increased the rate of OH- attack on cephaclor; most of the effect was due to the concentration of reagents in the micellar pseudophase. The intramolecular degradation was catalyzed 25-fold by micelles, and a working hypothesis to rationalize this effect is proposed. The results demonstrate that quantitative analysis can be utilized to assess and predict effects of detergents on drug stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical beta-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 +/- 871.03 nM and 1,239.23 +/- 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 +/- 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) was developed as a kinetic analysis and a detection method with dual- monitoring of the change of reflectivity and fluorescence signal for the interfacial phenomenon. A fundamental study of PNA and DNA interaction at the surface using surface plasmon fluorescence spectroscopy (SPFS) will be investigated in studies. Furthermore, several specific conditions to influence on PNA/DNA hybridization and affinity efficiency by monitoring reflective index changes and fluorescence variation at the same time will be considered. In order to identify the affinity degree of PNA/DNA hybridizaiton at the surface, the association constant (kon) and the dissociation constant (koff) will be obtained by titration experiment of various concentration of target DNA and kinetic investigation. In addition, for more enhancing the hybridization efficiency of PNA/DNA, a study of polarized electric field enhancement system will be introduced and performed in detail. DNA is well-known polyelectrolytes with naturally negative charged molecules in its structure. With polarized electrical treatment, applying DC field to the metal surface, which PNA probe would be immobilized at, negatively charged DNA molecules can be attracted by electromagnetic attraction force and manipulated to the close the surface area, and have more possibility to hybridize with probe PNA molecules by hydrogen bonding each corresponding base sequence. There are several major factors can be influenced on the hybridization efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rupture forces of ligand-receptor interactions, such as proteins-proteins, proteins-cells, and cells-tissues, have been successfully measured by atomic force spectroscopy (AFS). For these measurements, the ligands and receptors were chemically modified so that they can be immobilized on the tip and on a substrate, respectively. The ligand interact the receptor when the tip approaches the substrate. This interaction can be studied by measuring rupture force upon retraction. However, this technique is not feasible for measurements involving small molecules, since they form only few H-bonds with their corresponding receptors. Modifying small molecules for immobilization on surfaces may block or change binding sites. Thus, recorded rupture forces might not reflect the full scope of the involved small ligand-receptor interactions.rnIn my thesis, a novel concept that allows measuring the rupture force of small involved ligand-receptor interactions and does not require molecular modification for immobilization was introduced. The rupture force of small ligand-receptor interaction is not directly measured but it can be determined from measurements in the presence and in the absence of the ligand. As a model system, the adenosine mono phosphate (AMP) and the aptamer that binds AMP were selected. The aptamer (receptor) is a single stranded DNA that can partially self-hybridize and form binding pockets for AMP molecules (ligands). The bonds between AMP and aptamer are provided by several H-bonds and pair stacking.rnIn the novel concept, the aptamer was split into two parts (oligo a and oligo b). One part was immobilized on the tip and the other one on the substrate. Approaching the tip to the substrate, oligo a and oligo b partially hybridized and the binding pockets were formed. After adding AMP into the buffer solution, the AMP bound in the pockets and additional H-bonds were formed. Upon retraction of the tip, the rupture force of the AMP-split aptamer complex was measured. In the presence of excess AMP, the rupture force increased by about 10 pN. rnThe dissociation constant of the AMP-split aptamer complex was measured on a single molecular level (~ 4 µM) by varying the AMP concentrations and measuring the rupture force at each concentration. Furthermore, the rupture force was amplified when more pockets were added to the split aptamer. rnIn the absence of AMP, the thermal off-rate was slightly reduced compared to that in the presence of AMP, indicating that the AMP stabilized the aptamer. The rupture forces at different loading rates did not follow the logarithmic fit which was usually used to describe the dependence of rupture forces at different loading rates of oligonucleotides. Two distinguished regimes at low and high loading rates were obtained. The two regimes were explained by a model in which the oligos located at the pockets were stretched at high loading rates. rnThe contribution of a single H-bond formed between the AMP molecule and the split aptamer was measured by reducing the binding groups of the AMP. The rupture forces reduce corresponding to the reduction of the binding groups. The phosphate group played the most important role in the formation of H-bond network between the AMP molecule and the split aptamer. rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineral in our teeth is composed of a calcium-deficient carbonated hydroxyapatite (Ca10-xNax(PO4)6-y(CO3)z(OH)2-uFu). These substitutions in the mineral crystal lattice, especially carbonate, renders tooth mineral more acid soluble than hydroxyapatite. During erosion by acid and/or chelators, these agents interact with the surface of the mineral crystals, but only after they diffuse through the plaque, the pellicle, and the protein/lipid coating of the individual crystals themselves. The effect of direct attack by the hydrogen ion is to combine with the carbonate and/or phosphate releasing all of the ions from that region of the crystal surface leading to direct surface etching. Acids such as citric acid have a more complex interaction. In water they exist as a mixture of hydrogen ions, acid anions (e.g. citrate) and undissociated acid molecules, with the amounts of each determined by the acid dissociation constant (pKa) and the pH of the solution. Above the effect of the hydrogen ion, the citrate ion can complex with calcium also removing it from the crystal surface and/or from saliva. Values of the strength of acid (pKa) and for the anion-calcium interaction and the mechanisms of interaction with the tooth mineral on the surface and underneath are described in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the importance of the apoA-I/ABCA1 pathway in MG cholesterol transport and suggest its role in influencing milk composition and directing cholesterol back into the bloodstream.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentrations are potentially affecting marine ecosystems twofold, by warming and acidification. The rising amount of CO2 taken up by the ocean lowers the saturation state of calcium carbonate, complicating the formation of this key biomineral used by many marine organisms to build hard parts like skeletons or shells. Reliable time-series data of seawater pH are needed to evaluate the ongoing change and compare long-term trends and natural variability. For the high-latitude ocean, the region facing the strongest CO2 uptake, such time-series data are so far entirely lacking. Our study provides, to our knowledge, the first reconstruction of seasonal cycle and long-term trend in pH for a high-latitude ocean obtained from 2D images of stable boron isotopes from a coralline alga.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, label-free biosensing for antibody screening by periodic lattices of high-aspect ratio SU-8 nano-pillars (BICELLs) is presented. As a demonstration, the determination of anti-gestrinone antibodies from whole rabbit serum is carried out, and for the first time, the dissociation constant (KD = 6 nM) of antigen-antibody recognition process is calculated using this sensing system. After gestrinone antigen immobilization on the BICELLs, the immunorecognition was performed. The cells were interrogated vertically by using micron spot size Fourier transform visible and IR spectrometry (FT-VIS-IR), and the dip wavenumber shift was monitored. The biosensing assay exhibited good reproducibility and sensitivity (LOD = 0.75 ng/mL).