975 resultados para Dissipation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the energy dissipation mechanisms in single-crystal silicon MEMS/NEMS resonators are particularly important to maximizing an important figure of merit relevant for miniature sensor and signal processing applications: the Quality factor (Q) of resonance. This paper discusses thermoelastic dissipation (TED) as the dominant internal-friction mechanism in flexural mode MEMS/NEMS resonators. Criteria for optimizing the geometrical design of flexural mode MEMS/NEMS resonators are theoretically established with a view towards minimizing the TED for single-crystal silicon MEMS/NEMS flexural mode resonators.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concept based upon Equal Channel Angular Extrusion (ECAE) is developed and introduced in the form of a Universal Re-usable Energy Absorption Device 'UREAD'. In impact situations the device utilises the energy required to extrude deformable materials through the shear planes of a set of intersecting channels and hence provides the means to protect engineering structures. The impact force is absorbed through the resistance of a deformable material and the energy is dissipated through an operational stroke. This paper examines the use of this new concept under dynamic loading. The device performance and usability during dynamic impacts are tested in a landing frame type experiment where the effectiveness of the technique in reducing impact loads and energy are also examined. © (2011) Trans Tech Publications Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general equation for a variance parameter, appearing as a crucial quantity in a simple algebraic expression for the mean chemical rate, is derived. This derivation is based on a flamelet approach to model a turbulent premixed flame, for high but finite values of the Damköhler number. Application of this equation to the case of a planar turbulent flame normal to the oncoming flow of reactants gives good agreement with DNS data corresponding to three different values of the Damköhler number and two values of the heat release parameter. © 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of the scalar dissipation rate transport in the corrugated flamelets and the thin reaction zones regimes are studied based on two three-dimensional Direct Numerical Simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. The turbulent flame parameters are so chosen that the database which represents the corrugated flamelets regime has a global Damköhler number Da>1 whereas the database representing the thin reaction zones regime has Da <1. It is demonstrated that the terms originating from the correlation between fluctuating velocity and scalar gradient T1 shows strong Da dependence. The terms originating from dilatation T2, the scalar inner product of gradients of velocity and scalar fields T3 and the correlation between reaction rate and scalar gradients T4 and the dissipation term D2 remain important for both the flames. However, T3 dissipates scalar dissipation rate in the Da > 1 flame while it produces scalar dissipation rate in the Da < 1 flame. This difference is because of the change in the alignment between scalar and velocity gradients