999 resultados para Dispersões aquosas de polímeros
Resumo:
The applicability of the silylant agents of the general formula Y3Si-R-X, depends on the reactivity of Y group (halide or alcoxide) attached to silicon and the organic function X (halide, amine, thiol, cyanide, etc) in the extreme position of the chain. Both groups are linked together by an organic chain R, containing usually three methylene groups. A series of these agents can be covalently bonded to an inorganic matrix, since the available OH groups are distributed on the surface, making silica gel the most common support. However, other inorganic oxides, zeolites, lamellar inorganic phosphates and chrysotile can also have these agents anchored. Some illustration are presented for immobilized surface in the use as extractors of cations from dilute aqueous or non-aqueous solutions, catalysts agents, ionic exchanged materials, support for enzyme immobilization, chromatographic applications, use in some industrial features and in many other areas. The evolution of this exciting research field to produce new materials, for many tecnological applications, is strongly dependent on the development of a sensible systematic process for the synthesis of a series of new specific silylant agents.
Resumo:
In this work we discuss the aspects related to the phenomenon of mass transport in thin electroactive polymer films. Such phenomenon must be considered because the properties and consequent applications of these materials largely depend on the movement of charge carriers, i.e. ions, electrons or holes. The most recent majority of the techniques, methods and theoretical models used in this type of study are gathered and discussed, providing an easy and critical way for choosing the methodology for an investigation.
Resumo:
Capsules were prepared from chitosan (QTS)-poly(vinyl alcohol) (PVA) blend by saline coacervation and then by formalization. A adsorbent based on chitosan, insoluble on acid solution, was obtained. The morphology, average diameters of QTS/PVA capsules and their pores were studied by using scanning electron microscopy. The entrapment-adsorption of dimethylglioxime and ethylenediaminetetracetate by the capsules were studied. The removal of the ion nickel (II) and copper (II), was more effective than by using unloaded capsules.
Resumo:
This review discusses the methods used to prepare conductive polymers in confined environments. This spatial restriction causes formation of defect-free polymer chains in the interlayer as porous cavities of inorganic hosts. The properties of the different composites obtained are a synergist combination of the characteristics of the inorganic host and the polymer. This opens new perspectives for the preparation of these materials and widens its potential applications.
Resumo:
Perfluoro and sulfonated ion-exchange polymers are recognized as a very useful material for various mechanistic studies and applications in electrochemistry. These polymers are characterized by high equivalent weights and by a low number of ion-exchange sites interposed between long organic chains. The solubility enables a preparation of stable polyelectrolyte films on the electrode surface. Examples of the determination of trace metals and organic componds in real environmental samples are presented.
Resumo:
The data analyzed in this work were generated following the methodology developed by Molina et al.(J. Electroanal. Chem., 1979) for the calibration of a potentiometric system of measurement of hydrogen-ion concentrations resulting from neutralizations, at 25 ºC, of acidic or alkaline solutions at constant ionic strength (0.1 mol.l-1) held with NaClO4. The observed data present a serious deviation in relation to the mathematical model derived from the Nernst equation, for pH values ranging from 3 to 11, where pH=-log[H+]. We show that the minimization of the sum of the absolute values of the residuals gives estimates that are not influenced by outlying values.
Resumo:
Chlorinated polymers (PVC, PVDC and E-CTFE) were irradiated with white light produced at the Brazilian Synchrotron Light Source (LNLS). The emitted gases were analyzed by mass spectrometry. The spectra were dominated by peaks related to hydrochloric acid, HCl, and chlorine (35Cl). The measured HCl intensity is used to evaluate the sensitivity of the polymers over a broad energy range. PVDC showed the greatest light sensitivity as compared to PVC and E-CTFE.
Resumo:
Organic compounds responsible for the color of wastewaters are usually refractory to biological digestion. In this paper the photo-assisted electrolysis process is used for color removal from three of the most colored wastewaters, which are daily generated in large amounts: the E1 bleach Kraft mill effluent, a textile reactive dye effluent and a landfill leachate. Electrolysis was carried out at 26,5 mA cm-2 in a flow reactor in which the anode surface was illuminated by a 400 W high pressure Hg bulb. In all experiments 70-75% of color reduction was observed which was also followed by a net organic load oxidation.
Resumo:
This paper describes the development of a methodology for solid phase extraction (SPE) and pre-concentration of nitrosamines from aqueous samples using granular activated charcoal as stationary phase. micelar electrokinetic capillary Chromatography (MEKC) was used for the separation and identification of the nitrosamines in the extracts. Using a sample with 50 µg l-1 of each nitrosamines standards (dimethylnitrosamine, DMN; diethylnitrosamine, DEN; N-nitrosopyrrolidine, NPYR; N-nitrosopiperidine, NPIP; N-nitrosomorpholine, NMOR), the methodology showed a range of recuperation from 29 to 107% with a linear zone between 10 and 500 µg l-1. The developed methodology can be applicable to the determination of these analytes in different aqueous samples.
Resumo:
The electrochemical behavior of paraquat on Pt, Au and carbon fiber ultramicroelectrodes were studied in laboratory samples by square wave voltammetry at high frequencies. The results showed two reversible peaks for paraquat reduction, in agreement to the literature data. The first peak was associated to the reduction of paraquat molecule in solution, with the further adsorption of the intermediate on the electrode surface. This adsorbed species undergoes to electroreduction in a reaction associated to the second voltammetric peak. The variation in pH and square wave parameters showed the best conditions to reduce paraquat as pH 5.0, frequency as high as 1000 s-1, scan increment of 2 mV and square wave amplitude of 50 mV. At such conditions, a variation of paraquat concentrations from 4.3 x 10-6 to 1.66 x 10-4 mol L-1 presented values for the detection limit equal to 3.9, 6.2 and 20.3 ppb on Pt, Au and carbon, respectively, at 1000 s-1. These values are quite below17 the allowed limit of paraquat in drinking water.
Resumo:
With the aim of studying the interaction of fast electrons with solid surfaces we have developed an experimental set-up based on electron stimulated desorption (ESD) coupled to time-of-flight (TOF) mass spectrometry. Poly(methyl methacrylate) and poly(vynil chloride) samples have been irradiated by a pulsed electron beam of 1.2 keV and 0.18 µs FWHM. The results show that H+ is the main ionic species to desorb after electron bombardment. In addition, other ionic fragments were also observed and assigned. These results show the potentiality of this technique in the study of ESD of polymers.
Resumo:
A laboratory procedure was devised to recover bromine from waste alkaline aqueous solutions used in the isotopic determination of N-15. The laboratory apparatus comprises two round bottom flasks (1 and 2 L), a dropping funnel, a gas bubbler, a gas regulator and glass fittings. The waste solution is acidified with sulfuric acid forming molecular bromine that is stripped out by a flow of nitrogen gas bubbled through the solution. This gas is then bubbled through a solution of lithium hydroxide generating lithium bromide and lithium hypobromite. The efficiency of bromine recovery was estimated to be 82±2%. This resulting solution was successfully reused in the isotopic determination of N-15. The procedure can recycle most of the bromine used in the laboratory saving resources and preserving the environment. The procedure can be adapted to recover bromine of other laboratory waste streams.
Resumo:
The atomization behavior of Au, Ag, Bi, Cd, Pb, and Sn from pyrolitic graphite coating (L'vov platform) with the use Pd and Mg solutions, and zirconium coated platform with the analytes in nitric acid 0.2% v/v and in ethanol was investigated. In ethanol medium, the sensitivity gain was three-fold for Bi and Cd using Zr as modifier. Without modifier, the ethanol medium is appropriate only for Au and Cd. In nitric acid medium, the Zr coated platform elevates sensitivity at least two-fold for Bi and Cd. The method was applied to the determination of Ag, Au and Bi of certified steel samples, after on-line preconcentration, sorption on a minicolumn filled with C-18 bonded to silica gel and elution with ethanol. The concentrations obtained agreed with the recommended values.
Resumo:
The application of biocatalysis is a promising field related to new technologies for organic synthesis. The development of immobilization techniques is very important due to the multiple or repetitive use of a single batch of enzymes and the ability to stop the reaction rapidly, at any stage, by removing the enzymes. In most cases, after immobilization, enzymes and microorganisms maintain or even increase their activity and stability. This work presents an overview of the common methods for lipase immobilization in polymers and applications of these systems to obtain compounds of synthetic interest.
Resumo:
Solid municipal waste contains a large volume of polymers and its final disposal is a serious environmental problem. Consequently, the recycling of the principal polymers present in the solid waste is an alternative. In this review we describe the mechanical and chemical recycling of polymers and the energy recovery from plastic wastes. Polymer recycling involves not only the development of processing technologies, but also the solution of many chemical and analytical problems. The technological, economical and social aspects of polymer recycling are also considered.