990 resultados para Dispensable Organized
Resumo:
The validity of convective parametrization breaks down at the resolution of mesoscale models, and the success of parametrized versus explicit treatments of convection is likely to depend on the large-scale environment. In this paper we examine the hypothesis that a key feature determining the sensitivity to the environment is whether the forcing of convection is sufficiently homogeneous and slowly varying that the convection can be considered to be in equilibrium. Two case studies of mesoscale convective systems over the UK, one where equilibrium conditions are expected and one where equilibrium is unlikely, are simulated using a mesoscale forecasting model. The time evolution of area-average convective available potential energy and the time evolution and magnitude of the timescale of convective adjustment are consistent with the hypothesis of equilibrium for case 1 and non-equilibrium for case 2. For each case, three experiments are performed with different partitionings between parametrized and explicit convection: fully parametrized convection, fully explicit convection and a simulation with significant amounts of both. In the equilibrium case, bulk properties of the convection such as area-integrated rain rates are insensitive to the treatment of convection. However, the detailed structure of the precipitation field changes; the simulation with parametrized convection behaves well and produces a smooth field that follows the forcing region, and the simulation with explicit convection has a small number of localized intense regions of precipitation that track with the mid-levelflow. For the non-equilibrium case, bulk properties of the convection such as area-integrated rain rates are sensitive to the treatment of convection. The simulation with explicit convection behaves similarly to the equilibrium case with a few localized precipitation regions. In contrast, the cumulus parametrization fails dramatically and develops intense propagating bows of precipitation that were not observed. The simulations with both parametrized and explicit convection follow the pattern seen in the other experiments, with a transition over the duration of the run from parametrized to explicit precipitation. The impact of convection on the large-scaleflow, as measured by upper-level wind and potential-vorticity perturbations, is very sensitive to the partitioning of convection for both cases. © Royal Meteorological Society, 2006. Contributions by P. A. Clark and M. E. B. Gray are Crown Copyright.
Resumo:
We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.
Resumo:
Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.
Resumo:
The development of global orientation and morphological features in linear polyethylene crystallizing from a sheared melt are studied using in-situ time-resolving wide angle X-ray scattering (WAXS) and ex-situ transmission electron microscopy. It is found that samples subjected to a shear rate above a critical value of ~1s-1 result in macroscopically oriented structures in the crystallized sample. This critical shear rate appears to be independent of the differences in molecular weight distribution of the samples studied although the morphologies which develop are sensitive to quite small differences in molecular weight distributions. The presence of shish kebabs in the morphology is shown to differ markedly according to variations in the upper molecular weight fraction of the molecular weight distribution, even though the resulting global orientation does not. The WAXS also reveals that areas which evidence no row nucleated structures still realize high degrees of molecular orientation. It is proposed that the formation of shish kebab or lamellar morphologies in these samples is dependent on the critical density of contiguous elongated crystallization nuclei rather than any specific global criteria.
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
Here we report the derivatization of mesoporous TiO(2) thin films for the preparation of H(2)O(2) amperometric sensors. The coordination of the bifunctional ligand 1,10 phenantroline, 5,6 dione on the surface Ti(IV) ions provides open coordination sites for Fe(II) cations which are the starting point for the growth of a layer of Prussian blue polymer. The porous structure of the mesoporous TiO(2) allows the growth, ion by ion of the coordination polymer. Up to four layer of Prussian blue can be deposit without losing the porous structure of the film, which results in an enhanced response of these materials as H(2)O(2) sensors. These porous confined PB modified electrodes are robust sensors that exhibit good reproducibility, environmental stability and high sensitivity towards H(2)O(2) detection. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present work. the resonance Raman. UV-vis-NIR and scanning electron microscopic (SEM) data of nanorods (about similar to 300 rim in diameter) and nanofibers (about similar to 93 nm in diameter) of PANI are presented and compared. The PANI samples were synthesized in aqueous media with dodecybenzenesulfonic acid (DBSA) and beta-naphtalenesulfonic acid (beta-NSA) as dopants, respectively. The presence of hands at 578, 1400 and 1632cm(-1) in the Raman spectra of PANI-NSA and PANI-DBSA shows that the formation of cross-linking structures is a general feature of the PANI chains prepared in micellar media. It is proposed that these structures are responsible for the one-dimensional PANI morphology formation. In addition, the Raman band at 609cm(-1) of PANI fibers is correlated with the extended PANI chain coil formation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex mer-[RuCl3 (dppb)(4-Mepy)] (dppb = PPh2 (CH2)(4)-PPh2; 4-Mepy = 4-methylpyridine), termed Ru-Pic, display a distinct color, which is different from the coloration exhibited by cast films or chloroform solutions. The solution and cast films are red, while the LB films are green-bluish. The manifestation of the blue color in the LB film finds its explanation in a unique absorption band at 690 nm, which is associated with the oxidation of the phosphine moieties. Fluorescence emission and absorption-reflection infrared spectroscopy measurements revealed the molecular organization in the LB films. In contrast, cast films showed a random distribution of complexes. Surface-enhanced Raman scattering was also used in an attempt to identify the main interactions in Ru-Pic.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography