985 resultados para Disease Vectors
Resumo:
A century after the discovery of Chagas disease, it is still one of the most important parasitic diseases affecting humans. The subfamily Triatominae is important in medical health, because these insects are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease. These insects are also of important cytological relevance because they have particular cell characteristics, such as persistence of nucleolar material in spermatogenesis. The germ cells of the animal kingdom have chromatoid bodies (CBs) in their cytoplasm that can originate from nucleolar material that is fragmented in the early stages of spermatogenesis and plays an important role in cellular communication between the spermatids during spermiogenesis. Currently, there are few studies on the function and formation of the CB in nucleologenesis, especially with emphasis on the ultrastructure of the cells involved in spermatogenesis of insects. Considering the importance of knowledge about the triatomine fauna, we conducted a study of the biogeography and reports of these insects and a survey of patients with Chagas disease in the northwestern region of São Paulo State. Data collected from 1995 to 2009 indicated 700 individuals with Chagas disease, demonstrating a range of 0 to 40 years, which shows that the disease may be active in this region. Moreover, of the 1150 patients treated for cardiomyopathy, 44% were chagasic. Regarding the triatomines noted and captured in the period from 2004 to 2009, the species were Triatoma sordida and Rhodnius neglectus, with T. sordida being the most abundant. In addition, some triatomines were infected by T. cruzi in various developmental stages. We also analyzed the nucleolar cycle and fibrillarin nucleolar protein expression in CB of spermatogenic cells of T. infestans and T. sordida, using histological, ultrastructural and immunocytochemical techniques. The results revealed fibrillarin nucleolar protein expression in the nucleus and in some cytoplasmic spots of germ cells during spermatogenesis in triatomines. These data suggest that fibrillarin could be a constituent of CB, which was most likely derived from nucleolar fragmentation. This is the first time that fibrillarin protein expression has been shown in CB during spermatogenesis progression in triatomines. Knowledge about the biology of triatomines was deepened in this study and, in particular, the structural and ultrastructural aspects of spermatogenesis in triatomines. This study showed that the disease may be active in the northwestern region of São Paulo and expanded our knowledge of the biology of triatomines, the main vectors of Chagas disease. © FUNPEC-RP.
Resumo:
The etiologic agent of Chagas Disease is the Trypanosoma cruzi, transmitted through blood-sucking insect vectors of the Triatominae subfamily, representing one of the most serious public health concerns in Latin America. There are geographic variations in the prevalence of clinical forms and morbidity of Chagas disease, likely due to genetic variation of the T. cruzi and the host genetic and environmental features. Increasing evidence has supported that inflammatory cytokines and chemokines are responsible for the generation of the inflammatory infiltrate and tissue damage. Moreover, genetic polymorphisms, protein expression levels, and genomic imbalances are associated with disease progression. This paper discusses these key aspects. Large surveys were carried out in Brazil and served as baseline for definition of the control measures adopted. However, Chagas disease is still active, and aspects such as host-parasite interactions, genetic mechanisms of cellular interaction, genetic variability, and tropism need further investigations in the attempt to eradicate the disease. Copyright 2012 Marilanda Ferreira Bellini et al.
Resumo:
PURPOSE: Malnutrition is prevalent in patients with advanced liver disease (LD) related to multifactorial causes. Fluid retention can underestimate the nutritional status based on anthropometric measures. We evaluated nutritional indicators and body composition (BC) in patients with liver cirrhosis and correlated them with LD severity. METHODS: Forty three patients with LD enrolled for liver transplantation were evaluated by Anthropometric measures, subjective evaluation (Global Assessment of Nutritional Status - SGA) and biochemical indicators. Single-frequency electrical bioimpedance (SFE-BIA) was used to evaluate body composition (BC). It measured resistance (R), reactance (Xc) and the phase angle (PA). LD severity was estimated by Child-Pugh and Meld criteria (Model for End-Stage Liver Disease). RESULTS: Child-Pugh index between patients was 7.11±1.70 and Meld was 12.23±4.22. Arm Circumference, Arm Muscle Circumference and Arm Muscle Area, SGA, hemoglobin, hematocrit and albumin showed better correlation with disease severity. Xc and PA showed correlation both with Meld and Child-Pugh score when BC were evaluated. PA was depleted in 55.8% of the patients. CONCLUSIONS: Diagnosis of malnutrition varied according to the method. Global assessment of nutritional status showed better correlation with disease severity than with objective methods. Single-frequency electrical bioimpedance for body composition analysis in cirrhotic patients must be cautiously used; however, primary vectors seems to be valid and promising in clinical practice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Studies on Chagas disease deal with the perspective of its occurrence in the Amazon region, which is directly correlated to the population growth and the spread of the bug biotope. The state of Rondônia has an immense source of vectors (Triatomine) and reservoirs of Trypanosoma cruzi. Environmental changes brought forth by the deforestation in the region may cause vector behavior changes and bring these vectors to a closer contact with humans, increasing the probability of vector infection. Methods: This study was carried out to check the occurrence of Chagas disease in the municipality of Monte Negro, Rondônia, Brazil, based on a random sampling of the farms and people wherein blood collection from the population and capturing triatomines were done. The blood samples were submitted to serologic tests to detect antibodies of the IgG class against T. cruzi. The triatomines that were collected had their digestive tract checked for the presence of trypanosomatidae with morphology resembling that of the T. cruzi. Results: The population examined was mostly from other states. From the 322 bugs examined on the microscope, 50% showed parasites with morphology compatible with T. cruzi. From the serology of 344 random samples of human blood, 1.2% was found positive, 6% showed inconclusive results, and 92.8% were negative. Conclusions: Monte Negro shows low prevalence of human infection by T. cruzi and none active vector transmission; however, preventive and surveying measures, which are not performed until now, shall be taken due to the abundance of vectors infected by trypanosomatidae.
Resumo:
Myxobolus cerebralis, the cause of whirling disease in salmonids, has dispersed to waters in 25 states within the USA, often by an unknown vector. Its incidence in Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri within the highly protected environment of Yellowstone Lake, Yellowstone National Park, is a prime example. Given the local abundances of piscivorous birds, we sought to clarify their potential role in the dissemination of M. cerebralis. Six individuals from each of three bird species (American white pelican Pelecanus erythrorhynchos, double-crested cormorant Phalacrocorax auritus, and great blue heron Ardea herodias) were fed known-infected or uninfected rainbow trout O. mykiss. Fecal material produced during 10-d periods before and after feeding was collected to determine whether M. cerebralis could be detected and, if so, whether it remained viable after passage through the gastrointestinal tract of these birds. For all (100%) of the nine birds fed known-infected fish, fecal samples collected during days 1–4 after feeding tested positive for M. cerebralis by polymerase chain reaction. In addition, tubificid worms Tubifex tubifex that were fed fecal material from known-infected great blue herons produced triactinomyxons in laboratory cultures, confirming the persistent viability of the parasite. No triactinomyxons were produced from T. tubifex fed fecal material from known-infected American white pelicans or double-crested cormorants, indicating a potential loss of parasite viability in these species. Great blue herons have the ability to concentrate and release viable myxospores into shallow-water habitats that are highly suitable for T. tubifex, thereby supporting a positive feedback loop in which the proliferation of M. cerebralis is enhanced. The presence of avian piscivores as an important component of aquatic ecosystems should continue to be supported. However, given the distances traveled by great blue herons between rookeries and foraging areas in just days, any practices that unnaturally attract them may heighten the probability of M. cerebralis dispersal and proliferation within the Greater Yellowstone Ecosystem.
Resumo:
Management of wildlife disease can be targeted at pathogens, hosts or vector populations, but may also focus on the environment. As constituent elements of any given environment, resident wildlife populations, and their pathogens, may be profoundly influenced by environmental change, in terms of their abundance, distribution and behavior. Hence, it is reasonable to expect that incorporation of environmental manipulation into a program to control wildlife diseases may potentially result in outcomes as effective as direct intervention aimed at hosts, pathogens and vectors.
Resumo:
Huanglongbing (HLB) is a severe citrus (Citrus spp.) disease associated with the bacteria genus Candidatus Liberibacter, detected in Brazil in 2004. Another bacterium was found in association with HLB symptoms and characterized as a phytoplasma belonging to the 16SrIX group. The objectives of this study were to identify potential leafhopper vectors of the HLB-associated phytoplasma and their host plants. Leafhoppers were sampled every other week for 12 mo with sticky yellow cards placed at two heights (0.3 and 1.5 m) in the citrus tree canopy and by using a sweep net in the ground vegetation of two sweet orange, Citrus sinensis (L.) Osbeck, groves infected by the HLB-phytoplasma in Sao Paulo state. Faunistic analyses indicated one Agalliinae (Agallia albidula Uhler) and three Deltocephalinae [Balclutha hebe (Kirkaldy), Planicephalus flavicosta (Stal), and Scaphytopius (Convelinus) marginelineatus (Stal)] species, as the most abundant and frequent leafhoppers (Hemiptera: Cicadellidae). Visual observations indicated an association of leafhopper species with some weeds and the influence of weed species composition on leafhopper abundance in low-lying vegetation. S. marginelineatus and P. flavicosta were more frequent on Sida rhombifolia L. and Althernantera tenella Colla, respectively, whereas A. albidula was observed more often on Conyza bonariensis (L.) Cronq. and B. hebe only occurred on grasses. DNA samples of field-collected S. marginelineatus were positive by polymerase chain reaction and sequencing tests for the presence of the HLB-phytoplasma group, indicating it as a potential vector. The association of leafhoppers with their hosts may be used in deciding which management strategies to adopt against weeds and diseases in citrus orchards.
Resumo:
Abstract Background American cutaneous leishmaniasis (ACL) is a re-emerging disease in the state of São Paulo, Brazil. It is important to understand both the vector and disease distribution to help design control strategies. As an initial step in applying geographic information systems (GIS) and remote sensing (RS) tools to map disease-risk, the objectives of the present work were to: (i) produce a single database of species distributions of the sand fly vectors in the state of São Paulo, (ii) create combined distributional maps of both the incidence of ACL and its sand fly vectors, and (iii) thereby provide individual municipalities with a source of reference material for work carried out in their area. Results A database containing 910 individual records of sand fly occurrence in the state of São Paulo, from 37 different sources, was compiled. These records date from between 1943 to 2009, and describe the presence of at least one of the six incriminated or suspected sand fly vector species in 183/645 (28.4%) municipalities. For the remaining 462 (71.6%) municipalities, we were unable to locate records of any of the six incriminated or suspected sand fly vector species (Nyssomyia intermedia, N. neivai, N. whitmani, Pintomyia fischeri, P. pessoai and Migonemyia migonei). The distribution of each of the six incriminated or suspected vector species of ACL in the state of São Paulo were individually mapped and overlaid on the incidence of ACL for the period 1993 to 1995 and 1998 to 2007. Overall, the maps reveal that the six sand fly vector species analyzed have unique and heterogeneous, although often overlapping, distributions. Several sand fly species - Nyssomyia intermedia and N. neivai - are highly localized, while the other sand fly species - N. whitmani, M. migonei, P. fischeri and P. pessoai - are much more broadly distributed. ACL has been reported in 160/183 (87.4%) of the municipalities with records for at least one of the six incriminated or suspected sand fly vector species, while there are no records of any of these sand fly species in 318/478 (66.5%) municipalities with ACL. Conclusions The maps produced in this work provide basic data on the distribution of the six incriminated or suspected sand fly vectors of ACL in the state of São Paulo, and highlight the complex and geographically heterogeneous pattern of ACL transmission in the region. Further studies are required to clarify the role of each of the six suspected sand fly vector species in different regions of the state of São Paulo, especially in the majority of municipalities where ACL is present but sand fly vectors have not yet been identified.
Resumo:
Canavan disease (CD) is a rare leukodystrophy caused by loss-of-function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme. It is characterised by the accumulation of the ASPA substrate N-acetylaspartate (NAA) in brain, blood and urine, leading to a spongiform vacuolisation of the brain, severe motoric and cognitive impairments and premature death. To date, no therapy is available due to the lack of a gene-transfer system allowing transgene expression in oligodendrocytes (OLs) and the restoration of the missing enzyme. Hence, the aim of this study was to establish a novel gene-transfer system and its preclinical evaluation in a CD animal model.rnIn the first part of this thesis, a novel ASPA mouse mutant was generated. A βgeo cassette (including the genes encoding β-galactosidase and neomycin) flanked by frt sites was inserted into intron 1 of the intact aspa gene. Additionally, exon 2 was flanked by loxP sites for optional conditional deletion of the targeted locus. The resulting ASPA-deficient aspalacZ/lacZ-mouse was found to be an accurate model of CD and an important tool to identify novel aspects of its complex pathology. Homozygous mutants showed a CD-like histopathology, neurological impairment, behavioural deficits as well as a reduced body weight. Additionally, MRI data revealed changes in brain metabolite composition. rnRecombinant adeno-associated viral (rAAV) vectors have become a versatile tool for gene transfer to the central nervous system because they are efficient, non-toxic and replication-deficient. Based on the natural neurotropism of AAV vectors, AAV-based gene delivery has entered the clinics for the treatment of neurodegenerative diseases. However, the lack of AAV vectors with oligodendroglial tropism has precluded gene therapy for leukodystrophies. In the second part of this work, it was shown that the transduction profile of established AAV serotypes can be targeted towards OLs in a transcriptional approach, using the oligodendrocyte-specific myelin basic protein (MBP) promoter to drive transgene expression in OLs.rnIn the last part of this work, the therapeutic efficacy of AAV-mediated aspa gene transfer to OLs of juvenile aspalacZ/lacZ mice was evaluated. AAV-aspa injections into multiple sites of the brain parenchyma resulted in transduction of OLs in the grey and white matter throughout the brain. Histological abnormalities in the brain of ASPA-deficient mice were ameliorated and accompanied by a reduction of NAA levels. Furthermore, the treatment resulted in normalisation of body weight, motor function and nest-building behaviour. These data provide a proof-of-concept for a successful gene therapy of Canavan disease. This might pave the way towards translation into clinical application and serve as the basis for the genetic treatment of other leukodystrophies.
Resumo:
Cardiogoniometry (CGM), a spatiotemporal electrocardiologic 5-lead method with automated analysis, may be useful in primary healthcare for detecting coronary artery disease (CAD) at rest. Our aim was to systematically develop a stenosis-specific parameter set for global CAD detection. In 793 consecutively admitted patients with presumed non-acute CAD, CGM data were collected prior to elective coronary angiography and analyzed retrospectively. 658 patients fulfilled the inclusion criteria, 405 had CAD verified by coronary angiography; the 253 patients with normal coronary angiograms served as the non-CAD controls. Study patients--matched for age, BMI, and gender--were angiographically assigned to 8 stenosis-specific CAD categories or to the controls. One CGM parameter possessing significance (P < .05) and the best diagnostic accuracy was matched to one CAD category. The area under the ROC curve was .80 (global CAD versus controls). A set containing 8 stenosis-specific CGM parameters described variability of R vectors and R-T angles, spatial position and potential distribution of R/T vectors, and ST/T segment alterations. Our parameter set systematically combines CAD categories into an algorithm that detects CAD globally. Prospective validation in clinical studies is ongoing.
Resumo:
Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vectors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, intensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease systems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus general mechanisms
Resumo:
Chagas' disease, a devastating illness in the Western Hemisphere, is caused by the protozoan parasite Trypanosoma cruzi. Transmission is via bloodsucking insect vectors, congenitally, or through blood transfusion and/or organ transplantation. A significant percentage of heart-related illnesses and deaths each year are attributable to the number of persons with Chagas' disease. Currently, there is no FDA-approved routine screening of the U.S. blood supply being conducted by blood banks. The only current commercial assays available for detection of Trypanosoma cruzi are based on South American isolates, which may differ antigenically from those found in the US. In this study, the assay used intact parasites as antigen in an ELISA-type assay. Therefore, serological differences presumably reflected variations in surface antigens. The basis of differential antibody binding to these antigens is unknown. In this study, biochemical characterization and genetic polymorphism analysis will be performed on three defined surface proteins of T. cruzi epimastigotes.^
Resumo:
Relationships between agents in multitrophic systems are complex and very specific. Insect-transmitted plant viruses are completely dependent on the behaviour and distribution patterns of their vectors. The presence of natural enemies may directly affect aphid behaviour and spread of plant viruses, as the escape response of aphids might cause a potential risk for virus dispersal. The spatio-temporal dynamics of Cucumber mosaic virus (CMV) and Cucurbit aphid-borne yellows virus (CABYV), transmitted by Aphis gossypii in a non-persistent and persistent manner, respectively, were evaluated at short and long term in the presence and absence of the aphid parasitoid, Aphidius colemani. SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersion at short term, which enhanced CMV spread, though consequences of parasitism suggest potential benefits for disease control at long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV at long term. The impact of aphid parasitoids on the dispersal of plant viruses with different transmission modes is discussed.
Resumo:
The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48–72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, IKr, of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed IKr without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, IKs, without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed IKs and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.