872 resultados para Discontinuous dynamic systems
Resumo:
Slag foaming under dynamic conditions has been studied in laboratory scale to examine the influence of properties commonly used to describe the foaminess and foam stability of slags under steady-state conditions. Synthetically produced slags with compositions relevant to tool steel and stainless steel production were studied through X-ray equipment in measurements simulating the dynamic conditions found in real processes. It is found that the dynamic systems display a more complex behavior than systems Under steady state. Traditional theories for foaming do not seem to be valid for slag foaming under dynamic conditions. The foam displays a fluctuating behavior, which the presently available models are not able to take into account. The concept of a foaming index does not seem to be applicable, resulting in the need for alternative models.
Resumo:
This paper deals with dynamic recrystallization (DRX), static recrystallization, and grain growth phenomena of pure magnesium after equal channel angular pressing (ECAP) by route A and B-C at 523 K (250 A degrees C) followed by 80 pct cold rolling. The ECAP-deformed and the subsequently rolled samples were annealed at 373 K and 773 K (100 A degrees C and 500 A degrees C). The associated changes in the microstructure and texture were studied using electron back-scattered diffraction. ECAP produced an average grain size of 12 to 18 A mu m with B and C-2 fiber textures. Subsequent rolling led to an average grain size 8 to 10 A mu m with basal texture fiber parallel to ND. There was no noticeable increase in the average grain size on annealing at 373 K (100 A degrees C). However, significant increase in the average grain size occurred at 773 K (500 A degrees C). The occurrence of different DRX mechanisms was detected: discontinuous dynamic recrystallization was attributed to basal slip activity and continuous dynamic recovery and recrystallization to prismatic/pyramidal slip systems. Only continuous static recrystallization could be observed on annealing.
Resumo:
This paper is focused on the study of the important property of the asymptotic hyperstability of a class of continuous-time dynamic systems. The presence of a parallel connection of a strictly stable subsystem to an asymptotically hyperstable one in the feed-forward loop is allowed while it has also admitted the generation of a finite or infinite number of impulsive control actions which can be combined with a general form of nonimpulsive controls. The asymptotic hyperstability property is guaranteed under a set of sufficiency-type conditions for the impulsive controls.
Resumo:
Dynamic systems which undergo rapid motion can excite natural frequencies that lead to residual vibration at the end of motion. This work presents a method to shape force profiles that reduce excitation energy at the natural frequencies in order to reduce residual vibration for fast moves. Such profiles are developed using a ramped sinusoid function and its harmonics, choosing coefficients to reduce spectral energy at the natural frequencies of the system. To improve robustness with respect to parameter uncertainty, spectral energy is reduced for a range of frequencies surrounding the nominal natural frequency. An additional set of versine profiles are also constructed to permit motion at constant speed for velocity-limited systems. These shaped force profiles are incorporated into a simple closed-loop system with position and velocity feedback. The force input is doubly integrated to generate a shaped position reference for the controller to follow. This control scheme is evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with minimum residual vibration when actuator saturation is avoided. Feedback control compensates for the effect of friction Using only a knowledge of the natural frequencies of the system to shape the force inputs, vibration can also be attenuated in modes which vibrate in directions other than the motion direction. When moving several axes, the use of shaped inputs allows minimum residual vibration even when the natural frequencies are dynamically changing by a limited amount.
Towards a situation-awareness-driven design of operational business intelligence & analytics systems
Resumo:
With the swamping and timeliness of data in the organizational context, the decision maker’s choice of an appropriate decision alternative in a given situation is defied. In particular, operational actors are facing the challenge to meet business-critical decisions in a short time and at high frequency. The construct of Situation Awareness (SA) has been established in cognitive psychology as a valid basis for understanding the behavior and decision making of human beings in complex and dynamic systems. SA gives decision makers the possibility to make informed, time-critical decisions and thereby improve the performance of the respective business process. This research paper leverages SA as starting point for a design science project for Operational Business Intelligence and Analytics systems and suggests a first version of design principles.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.
Resumo:
The paper presents an overview of dynamic systems with inherent delays in both feedforward and feedback paths and how the performance of such systems can be affected by such delays. The authors concentrate on visually guided systems, where the behaviour of the system is largely dependent on the results of the vision sensors, with particular reference to active robot heads (real-time gaze control). We show how the performance of such systems can deteriorate substantially with the presence of unknown and/or variable delays. Considered choice of system architecture, however, allows the performance of active vision systems to be optimised with respect to the delays present in the system.
Resumo:
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Resumo:
We present a minor but essential modification to the CODEX 1D-MAS exchange experiment. The new CONTRA method, which requires minor changes of the original sequence only, has advantages over the previously introduced S-CODEX, since it is less sensitive to artefacts caused by finite pulse lengths. The performance of this variant, including the finite pulse effect, was confirmed by SIMPSON calculations and demonstrated on a number of dynamic systems. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, and may be encoded in electronic contracts in order to specify the obliged, permitted and prohibited behaviours of agents that are signatories to such contracts. Enactment and management of electronic contracts thus enables the use of regulatory mechanisms to ensure that agent behaviours comply with the encoded norms. To facilitate such mechanisms requires monitoring in order to detect and explain violation of norms. In this paper we propose a framework for monitoring that is to be implemented and integrated into a suite of contract enactment and management tools. The framework adopts a non-intrusive approach to monitoring, whereby the states of a contract with respect to its contained norms can be inferred on the basis of messages exchanged. Specifically, the framework deploys agents that observe messages sent between contract signatories, where these messages correspond to agent behaviours and therefore indicate whether norms are, or are in danger of, being violated.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, where these norms specify the obliged, permitted and prohibited behaviours of agents. Regulation can effectively be achieved through use of enforcement mechanisms that result in a net loss of utility for an agent in cases where the agent's behaviour fails to comply with the norms. Recognition of compliance is thus crucial for achieving regulation. In this paper we propose a generic architecture for observation of agent behaviours, and recognition of these behaviours as constituting, or counting as, compliance or violation. The architecture deploys monitors that receive inputs from observers, and processes these inputs together with transition network representations of individual norms. In this way, monitors determine the fulfillment or violation status of norms. The paper also describes a proof of concept implementation and deployment of monitors in electronic contracting environments.