932 resultados para Direct Load Control
Resumo:
Despite different operative and non-operative treatment regimens, the outcome after femoral head fractures has changed little over the past decades. The initial trauma itself as well as secondary changes such as posttraumatic osteoarthritis, avascular necrosis or heterotopic ossification is often responsible for severe loss of function of the afflicted hip joint. Anatomic reduction of all fracture fragments seems to be a major influencing factor in determining the outcome quality. Eight years ago we inaugurated a new surgical approach for better access and visualisation for the treatment of femoral head fractures, using the "trochanteric flip" (digastric) osteotomy. Thus inspection of the entire hip joint and accurate fragment reduction under direct visual control are possible. After good initial experiences with this operative procedure we changed our standard treatment regimen to this approach in an attempt to achieve the most accurate anatomic reduction of the femoral head in every affected patient. Between 1998 and 2006 we operated on 12 patients with femoral head fractures associated with posterior hip dislocation, using the new surgical approach. Patients were followed for 2-96 months and outcome was documented with the Merle d'Aubigne and Postel score as well as the Thompson and Epstein score. The posttraumatic formation of heterotopic bone was documented with the Brooker score. Retrospective analysis of these 12 patients showed good or excellent results in 10 patients (83.3%). The two patients with poor outcome developed an avascular necrosis of the femoral head and underwent total hip arthroplasty. Periarticular heterotopic ossification was seen in five patients. In four patients this caused a significantly reduced range of motion and was therefore considered as a posttraumatic complication. The two patients with the most severe heterotopic bone formation (Brooker III and IV) had initially sustained multiple injuries including brain injury. Comparing our results with earlier published series including our own before changing the treatment protocol, the data suggest a favorable outcome in patients with trochanteric flip (digastric) osteotomy for the treatment of femoral head fractures.
Resumo:
The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
Objective. To improve quality of in-hospital care of patients with acute coronary syndromes using a multifaceted quality improvement program. Design. Prospective, before and after study of the effects of quality improvement interventions between October 2000 and August 2002. Quality of care of patients admitted between 1 October 2000 and 16 April 2001 (baseline) was compared with that of those admitted between 15 February 2002 and 31 August 2002 (post-intervention). Setting. Three teaching hospitals in Brisbane, Australia. Study participants. Consecutive patients (n = 1594) admitted to hospital with acute coronary syndrome [mean age 68 years (SD 14 years); 65% males]. Interventions. Clinical guidelines, reminder tools, and educational interventions; 6-monthly performance feedback; pharmacist-mediated patient education program; and facilitation of multidisciplinary review of work practices. Main outcome measures. Changes in key quality indicators relating to timing of electrocardiogram (ECG) and thrombolysis in emergency departments, serum lipid measurement, prescription of adjunctive drugs, and secondary prevention. Results. Comparing post-intervention with baseline patients, increases occurred in the proportions of eligible patients: (i) undergoing timely ECG (70% versus 61%; P = 0.04); (ii) prescribed angiotensin-converting enzyme inhibitors (70% versus 60%; P = 0.002) and lipid-lowering agents (77% versus 68%; P = 0.005); (iii) receiving cardiac counselling in hospital (57% versus 48%; P = 0.009); and (iv) referred to cardiac rehabilitation (17% versus 8%; P < 0.001). Conclusions. Multifaceted approaches can improve care processes for patients hospitalized with acute coronary syndromes. Care processes under direct clinician control changed more quickly than those reliant on complex system factors. Identifying and overcoming organizational impediments to quality improvement deserves greater attention.
Resumo:
Uniform thin-films of polymer blends can be produced through spin-coating, which is used on an industrial scale for the production of light emitting diodes, and more recently organic photovoltaic devices. Here, we present the results of the direct observation, and control, over the phase separation of polystyrene and poly(9,9′-dioctylfluorene) during spin-coating using high speed stroboscopic fluorescence microscopy. This new approach, imaging the fluorescence, from a blend of fluorescent + non-fluorescent polymers allows for intensity to be directly mapped to composition, providing a direct determination of composition fluctuations during the spin-coating process. We have studied the compositional development and corresponding structural development for a range of compositions, which produce a range of different phase separated morphologies. We initially observe domains formed by spinodal decomposition, coarsening via Ostwald Ripening until an interfacial instability causes break-up of the bicontinuous morphology. Ostwald ripening continues, and depending upon composition a bicontinuous morphology is re-established. By observing compositional and morphological development in real-time, we are able to direct and control morphological structure development through control of the spin coating parameters via in situ feedback. © 2013 The Royal Society of Chemistry.
Resumo:
Compact and tunable semiconductor terahertz sources providing direct electrical control, efficient operation at room temperatures and device integration opportunities are of great interest at the present time. One of the most well-established techniques for terahertz generation utilises photoconductive antennas driven by ultrafast pulsed or dual wavelength continuous wave laser systems, though some limitations, such as confined optical wavelength pumping range and thermal breakdown, still exist. The use of quantum dot-based semiconductor materials, having unique carrier dynamics and material properties, can help to overcome limitations and enable efficient optical-to-terahertz signal conversion at room temperatures. Here we discuss the construction of novel and versatile terahertz transceiver systems based on quantum dot semiconductor devices. Configurable, energy-dependent optical and electronic characteristics of quantum-dot-based semiconductors are described, and the resonant response to optical pump wavelength is revealed. Terahertz signal generation and detection at energies that resonantly excite only the implanted quantum dots opens the potential for using compact quantum dot-based semiconductor lasers as pump sources. Proof-of-concept experiments are demonstrated here that show quantum dot-based samples to have higher optical pump damage thresholds and reduced carrier lifetime with increasing pump power.
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
The asynchronous polyphase induction motor has been the motor of choice in industrial settings for about the past half century because power electronics can be used to control its output behavior. Before that, the dc motor was widely used because of its easy speed and torque controllability. The two main reasons why this might be are its ruggedness and low cost. The induction motor is a rugged machine because it is brushless and has fewer internal parts that need maintenance or replacement. This makes it low cost in comparison to other motors, such as the dc motor. Because of these facts, the induction motor and drive system have been gaining market share in industry and even in alternative applications such as hybrid electric vehicles and electric vehicles. The subject of this thesis is to ascertain various control algorithms’ advantages and disadvantages and give recommendations for their use under certain conditions and in distinct applications. Four drives will be compared as fairly as possible by comparing their parameter sensitivities, dynamic responses, and steady-state errors. Different switching techniques are used to show that the motor drive is separate from the switching scheme; changing the switching scheme produces entirely different responses for each motor drive.
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
Several didactic modules for an electric machinery laboratory are presented. The modules are dedicated for DC machinery control and get their characteristic curves. The didactic modules have a front panel with power and signal connectors and can be configurable for any DC motor type. The three-phase bridge inverter proposed is one of the most popular topologies and is commercially available in power package modules. The control techniques and power drives were designed to satisfy static and dynamic performance of DC machines. Each power section is internally self-protected against misconnections and short-circuits. Isolated output signals of current and voltage measurements are also provided, adding versatility for use either in didactic or research applications. The implementation of such modules allowed experimental confirmation of the expected performance.
Resumo:
Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.
Resumo:
Little is known on a putative effect of vitamin D on CD8+ T cells. Yet, these cells are involved in the immmunopathogenesis of MS. We assessed the cytokine profile of EBV-specific CD8+ T cells of 10 early MS patients and 10 healthy control subjects with or without 1,25(OH)(2)D(3) and found that, with 1,25(OH)(2)D(3), these cells secreted less IFN-γ and TNF-α and more IL-5 and TGF-β. CD4+ T cell depletion or even culture with CD8+ T cells only did not abolish the immunomodulatory effect of 1,25(OH)(2)D(3) on CD8+ T cells, suggesting that 1,25(OH)(2)D(3) can act directly on CD8+ T cells.
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
During an infection the antigen-nonspecific memory CD8 T cell compartment is not simply an inert pool of cells, but becomes activated and cytotoxic. It is unknown how these cells contribute to the clearance of an infection. We measured the strength of T cell receptor (TCR) signals that bystander-activated, cytotoxic CD8 T cells (BA-CTLs) receive in vivo and found evidence of limited TCR signaling. Given this marginal contribution of the TCR, we asked how BA-CTLs identify infected target cells. We show that target cells express NKG2D ligands following bacterial infection and demonstrate that BA-CTLs directly eliminate these target cells in an innate-like, NKG2D-dependent manner. Selective inhibition of BA-CTL-mediated killing led to a significant defect in pathogen clearance. Together, these data suggest an innate role for memory CD8 T cells in the early immune response before the onset of a de novo generated, antigen-specific CD8 T cell response.
Resumo:
Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipulated by asking subjects to memorize the spatial locations of 6 or 3 disks. The grid was always presented between the encoding and recognition of the disk pattern. As a baseline condition, grid stimuli were presented without a VSWM context. VSWM load altered both perceptual performance and neural networks active during intervening grid encoding. Participants performed faster and more accurately on a challenging perceptual task under high VSWM load as compared to the low load and the baseline condition. Visual evoked potential (VEP) analyses identified changes in the configuration of the underlying sources in one particular period occurring 160-190 ms post-stimulus onset. Source analyses further showed an occipito-parietal down-regulation concurrent to the increased involvement of temporal and frontal resources in the high VSWM context. Together, these data suggest that cognitive control mechanisms supporting working memory may selectively enhance concurrent visual processing related to an independent goal. More broadly, our findings are in line with theoretical models implicating the engagement of frontal regions in synchronizing and optimizing mnemonic and perceptual resources towards multiple goals.