940 resultados para Diploid number
Resumo:
The chromosomes of Bufo crucifer, B. ictericus, and B. pamacnemis were studied by conventional staining as well as with C banding and NOR techniques. These species have a diploid number of 2n = 22 and identical karyotypes, composed of metacentric and submetacentric chromosomes. The C banding patterns and NOR data indicate that these species of Bufo are not differentiated by the distribution and amount of constitutive heterochromatin or the position of the nucleolar organizer regions.
Resumo:
The speciose Brazilian Elateridae fauna is characterized by high karyotypic diversity, including one species (Chalcolepidius zonatus Eschscholtz, 1829) with the lowest diploid number within any Coleoptera order. Cytogenetic analysis of Conoderus dimidiatus Germar, 1839, C. scalaris (Germar, 1824,) C. ternarius Germar, 1839, and C. stigmosus Germar, 1839 by standard and differential staining was performed with the aim of establishing mechanisms of karyotypic differentiation in these species. Conoderus dimidiatus, C. scalaris, and C. ternarius have diploid numbers of 2n(male) = 17 and 2n(female) = 18, and a X0/XX sex determination system, similar to that encountered in the majority of Conoderini species. The karyotype of C. stigmosus was characterized by a diploid number of 2n=16 and a neoXY/neoXX sex determination system that was highly differentiated from other species of the genus. Some features of the mitotic and meiotic chromosomes suggest an autosome/ancestral X chromosome fusion as the cause of the neoXY system origin in C. stigmosus. C-banding and silver impregnation techniques showed that the four Conoderus species possess similar chromosomal characteristics to those registered in most Polyphaga species, including pericentromeric C band and autosomal NORs. Triple staining techniques including CMA(3)/DA/DAPI also provided useful information for differentiating these Conoderus species. These techniques revealed unique GC-rich heterochromatin associated with NORs in C. scalaris and C. stigmosus and CMA(3)-heteromorphism in C. scalaris and C. ternarius.
Resumo:
Meiosis and (or) mitosis of males and females of Cryptotermes brevis, Eucryptotermes wheeleri, and Neotermes fulvescens, all of them from the neotropical region, were analyzed. Cryptotermes brevis showed a similar karyotype to that obtained by other authors for specimens of the neartic and Australian regions (2n = 36 for females and 2n = 37 for males, with XX and XYY sex mechanisms, respectively). Eucryptotermes wheeleri, the only species that has been described in this genus, showed the lowest number of chromosomes reported for Isoptera (2n = 22) until now. The male meiosis of this species presents a linear chain of six sex chromosomes, three of them being X and three of them Y chromosomes. Neotermes fulvescens showed a diploid number of 40 for males and 42 for females and, in the first male meiosis, two linear chains of chromosomes, both related to sex. One of the chains, named A, presented nine chromosomes and the other, named B, seven chromosomes. Hypotheses to explain these mechanisms are formulated in this paper and putative ancestral relationships with other species of Kalotermitidae are presented.
Resumo:
The chromosome study of five species of the family Elateridae, belonging to the subfamilies Agrypninae and Elaterinae, and the analysis of the cytogenetic data previously recorded for this family permitted the establishment of the main strategies of karyotypic differentiation that has occurred in the elaterids. In Agrypninae, the three species studied (Conoderus fuscofasciatus, Conoderus rufidens, and Conoderus sp.) showed the male karyotype 2n = 16 + X0. This karyotypic uniformity detected in these Conoderus species has also been shared with other species of the same genus, differing considerably from chromosomal heterogeneity verified in the subfamily Agrypninae. The use of the C-banding technique in C. fuscofasciatus and Conoderus sp. revealed constitutive heterochromatin in the pericentromeric region of the majority of the chromosomes. In C. fuscofasciatus, additional constitutive heterochromatin were also observed in the long arm terminal region of almost all chromosomes. Among the representatives of Elaterinae, the karyotype 2n = 18 + Xy(p) of Pomachilius sp.2 was similar to that verified in the majority of the Coleoptera species, contrasting with the chromosomal formula 2n = 18 + X0 detected in Cardiorhinus rufilateris, which is most common in the species of Elaterinae. In the majority of the elaterids, the chromosomal differentiation has frequently been driven by reduction of the diploid number; but, among the four cytogenetically examined subfamilies, there are some differences in relation to the trends of karyotypic evolution. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The first cytogenetic analysis of fireflies from Brazilian fauna was carried out in this work. The investigation of two species of the subfamily Lampyrinae, Aspisoma maculatum and Photinus sp. (aff. pyralis), showed the diploid number 2n = 19 and an X0 sex determination system in males. These observations are similar to those already described for all the Lampyrinae species previously studied. In contrast, Bicellonycha lividipennis (Photurinae) revealed the karyotype 2n = 16 + neoXY, which has not yet been registered for any firefly species. The neoXY sex determination system encountered in this species probably arose through fusion between an ancestral X sex chromosome, belonging to the X0 system, and an autosomal element. This event also reduced the diploid number from 2n = 19, which is more frequent in the family Lampyridae, to 2n = 18 in B. lividipennis. The analysis of meiotic cells showed that the neoXY sexual bivalent of B. lividipennis exhibited a prominent terminal chiasma, indicating that the sex chromosomes are not wholly differentiated and still retain a region of homology. A review of the cytogenetic data known for the family Lampyridae was also documented in this work, as well as a discussion on the main trends of chromosomal evolution that seem to have occurred in this group.
Resumo:
Cytogenetic studies carried out on nine species belonging to five genera of the subfamily Hypoptopomatinae showed that this group has a relatively constant diploid number, 2n = 54, with only one species having 2n = 72 chromosomes. Nevertheless, the karyotypic formulae, NOR position and C-band pattern are very different among species and sometimes among local populations, with species having undifferentiated sex chromosomes and species having the XX/XY or the ZZ/ZW mechanisms. The population structure of species belonging to the subfamily Hypoptopomatinae suggests that many chromosome rearrangements have been fixed in the different species and populations due to their geographic isolation and these karyotypic differences may be very important today for species definition.
Resumo:
Cytogenetic studies involving conventional Giemsa staining, C-banding analysis and silver staining of NORs were performed on nine species belonging to six genera of the family Callichthyidae. The diploid number ranged from 2n = 44 to 2n = 100, the number of chromosomal pairs with NORs ranged from 1 to 4 and constitutive heterochromatin was mainly distributed in the centromeric and/or pericentromeric position of the chromosomes. The DNA content of erythrocytes from six species studied ranged from 1.18 +/- 0.07 to 2.77 +/- 0.22 pg/nucleus. The extensive variability in karyotypes and in nuclear DNA content detected are in accordance with the initial hypothesis that chromosome rearrangements and polyploidy have played a significant role in the evolutionary history of Callichthyidae.
Resumo:
The chromosome constitution of five males and three females of the Pampas deer (Ozotoceros bezoarticus) coming mainly from the region of Corumba-MS, was studied. The diploid number of the species was reconfirmed as 68 chromosomes with Fundamental Number (FN) = 74. The X chromosome was the largest and the Y the smallest in the genome. Constitutive heterochromatin demonstrated by C banding was present in the centromeric region of all chromosomes, except in pair number two, which had none, and in chromosome X which had a stained region in the telomere on the long arm, Chromosomes pairs 3 and 4 bore Ag-NORs. The banding patterns differed from those of previous reports for this species. This may be due to subspecific differences.
Resumo:
Blood from eight specimens of both sexes of the alligator Caiman latirostris was collected and incubated in culture medium. Conventional as well as chromosomal banding (C and NOR) techniques were used.The diploid number was determined as 42, being 24 telocentric, 12 metacentric and six submetacentric, with real lengths varying from 1.49 to 6.08, 1.63 to 3.71, and 2.41 to 3.19 mum, respectively. The fundamental number was 60. About 81% of the chromosomes were small and 19% medium in size. NOR-banding was presented for the first time for this species and it was verified that only one submetacentric pair (no. 20) was marked on arm q, and under conventional staining it presented a secondary constriction. There was no association between NOR marked chromosomes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As part of a program to understand the genetics of Amazonian ornamental fish, classical cytogenetics was used to analyze Symphysodon aequifasciatus, S. discus and S. haraldi, popular and expensive aquarium fishes that are endemic to the Amazon basin. Mitotic analyses in Symphysodon have shown some odd patterns compared with other Neotropical cichlids. We have confirmed that Symphysodon species are characterized by chromosomal diversity and meiotic complexity despite the fact that species share the same diploid number 2n = 60. An intriguing meiotic chromosomal chain, with up to 20 elements during diplotene/diakinesis, was observed in S. aequifasciatus and S. haraldi, whereas S. discus only contains typical bivalent chromosomes. Such chromosomal chains with a high number of elements have not been observed in any other vertebrates. We showed that the meiotic chromosomal chain was not sex related. This observation is unusual and we propose that the origin of meiotic multiples in males and females is based on a series of translocations that involved heterochromatic regions after hybridization of ancestor wild Discus species. Heredity (2009) 102, 435-441; doi: 10.1038/hdy.2009.3; published online 25 February 2009
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The chromosomic constitution of the Marsh Deer (Blastocerus dichotomus) was studied in 18 males and 18 females, mainly from the Tiete river basin in Sao Paulo State, Brazil. The species diploid number was determined to be 66 chromosomes and the fundamental number (FN), 74. The X and the Y were the largest and the smallest chromosome, respectively. Large amounts of the constitutive heterochromatin marked by the C band were located in the centromeric region of all the acrocentric chromosomes. The first chromosome pair was not marked and the second and third pairs showed weak centromeric markings. The X chromosome showed two strong telomeric markings while the Y was C band negative. Chromosomes four and five were the NOR carriers. Polymorphism for this band was observed in pair four. The results of this study are in agreement with other reports in the literature, in spite of the different origin of the animals.
Resumo:
In this paper we provide a cytogenetic analysis of Paratelmatobius cardosoi and Paratelmatobius poecilogaster. The karyotypes of both species showed a diploid number of 24 chromosomes and shared some similarity in the morphology of some pairs. On the other hand, pairs 4 and 6 widely differed between these complements. These karyotypes also differed in their NOR number and location. Size heteromorphism was seen in all NOR-bearing chromosomes of the two karyotypes. In addition, both karyotypes showed small centromeric C-bands and a conspicuous heterochromatic band in the short arm of chromosome 1, although with a different size in each species. The P. cardosoi complement also showed other strongly stained non-centromeric C-bands, with no counterparts in the P. cardosoi karyotype. Chromosome staining with fluorochromes revealed heterogeneity in the base composition of two of the non-centromeric C-bands of P. cardosoi. Comparison of the chromosomal morphology of these Paratelmatobius karyotypes with that of P. lutzii showed that the P. poecilogaster karyotype is more similar to that of P. lutzii than P. cardosoi. These cytogenetic results agree with the proposed species arrangements in the P. cardosoi and P. lutzii groups based on morphological and ecological data.
Resumo:
Loricariidae is one of the largest fish families of the world, with about 650 species separated into six subfamilies. To date, cytogenetic data on only 56 species of this family are available. In the present study, the karyotypes of three Ancistrinae species and five Loricariinae species were studied. The lowest diploid number, 2n=38, was observed in Ancistrus n.sp. 1 (Ancistrinae) and the highest diploid number, 2n=70, was observed in Rineloricaria n.sp. (Loricariinae). The nucleolar organizer regions (NORs) were seen at a terminal position in six species and at an interstitial position in two. The karyotypic analysis of Loricariinae and Ancistrinae species revealed that these groups exhibit a large diversity of diploid numbers, suggesting the occurrence of intense karyotypic evolution during their evolutionary history.