870 resultados para Differential Operators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form ""sum of squares"", satisfying Hormander's bracket condition. Let q be a characteristic point; for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji Show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves' conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss the existence of solutions for a class of abstract degenerate neutral functional differential equations. Some applications to partial differential equations are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the existence of global solutions for a class of abstract neutral differential equation defined on the whole real axis. Some concrete applications related to ordinary and partial differential equations are considered. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the existence of mild solutions for a class of impulsive functional differential equations of the neutral type associated with the family of linear closed (not necessarily bounded) operators {A(t) : t is an element of 1}. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish the existence of mild solutions for a class of impulsive second-order partial neutral functional differential equations with infinite delay in a Banach space. (C) 2009 Published by Elsevier Ltd

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with implicit second order abstract differential equations with nonlocal conditions. Assuming that the involved operators satisfy sonic compactness properties, we establish the existence of local mild solutions, the existence of global mild solutions and the existence of asymptotically almost periodic solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the existence of mild solutions for a class of impulsive neutral functional differential equation defined on the whole real axis. Some concrete applications to ordinary and partial neutral differential equations with impulses are considered. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the classical coupled, combined-field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle. In recent work, we have proved lower and upper bounds on the $L^2$ condition numbers for these formulations, and also on the norms of the classical acoustic single- and double-layer potential operators. These bounds to some extent make explicit the dependence of condition numbers on the wave number $k$, the geometry of the scatterer, and the coupling parameter. For example, with the usual choice of coupling parameter they show that, while the condition number grows like $k^{1/3}$ as $k\to\infty$, when the scatterer is a circle or sphere, it can grow as fast as $k^{7/5}$ for a class of `trapping' obstacles. In this paper we prove further bounds, sharpening and extending our previous results. In particular we show that there exist trapping obstacles for which the condition numbers grow as fast as $\exp(\gamma k)$, for some $\gamma>0$, as $k\to\infty$ through some sequence. This result depends on exponential localisation bounds on Laplace eigenfunctions in an ellipse that we prove in the appendix. We also clarify the correct choice of coupling parameter in 2D for low $k$. In the second part of the paper we focus on the boundary element discretisation of these operators. We discuss the extent to which the bounds on the continuous operators are also satisfied by their discrete counterparts and, via numerical experiments, we provide supporting evidence for some of the theoretical results, both quantitative and asymptotic, indicating further which of the upper and lower bounds may be sharper.