907 resultados para Dialogue.
Resumo:
The partially observable Markov decision process (POMDP) provides a popular framework for modelling spoken dialogue. This paper describes how the expectation propagation algorithm (EP) can be used to learn the parameters of the POMDP user model. Various special probability factors applicable to this task are presented, which allow the parameters be to learned when the structure of the dialogue is complex. No annotations, neither the true dialogue state nor the true semantics of user utterances, are required. Parameters optimised using the proposed techniques are shown to improve the performance of both offline transcription experiments as well as simulated dialogue management performance. ©2010 IEEE.
Resumo:
Effective dialogue management is critically dependent on the information that is encoded in the dialogue state. In order to deploy reinforcement learning for policy optimization, dialogue must be modeled as a Markov Decision Process. This requires that the dialogue statemust encode all relevent information obtained during the dialogue prior to that state. This can be achieved by combining the user goal, the dialogue history, and the last user action to form the dialogue state. In addition, to gain robustness to input errors, dialogue must be modeled as a Partially Observable Markov Decision Process (POMDP) and hence, a distribution over all possible states must be maintained at every dialogue turn. This poses a potential computational limitation since there can be a very large number of dialogue states. The Hidden Information State model provides a principled way of ensuring tractability in a POMDP-based dialogue model. The key feature of this model is the grouping of user goals into partitions that are dynamically built during the dialogue. In this article, we extend this model further to incorporate the notion of complements. This allows for a more complex user goal to be represented, and it enables an effective pruning technique to be implemented that preserves the overall system performance within a limited computational resource more effectively than existing approaches. © 2011 ACM.
Resumo:
This article presents a novel algorithm for learning parameters in statistical dialogue systems which are modeled as Partially Observable Markov Decision Processes (POMDPs). The three main components of a POMDP dialogue manager are a dialogue model representing dialogue state information; a policy that selects the system's responses based on the inferred state; and a reward function that specifies the desired behavior of the system. Ideally both the model parameters and the policy would be designed to maximize the cumulative reward. However, while there are many techniques available for learning the optimal policy, no good ways of learning the optimal model parameters that scale to real-world dialogue systems have been found yet. The presented algorithm, called the Natural Actor and Belief Critic (NABC), is a policy gradient method that offers a solution to this problem. Based on observed rewards, the algorithm estimates the natural gradient of the expected cumulative reward. The resulting gradient is then used to adapt both the prior distribution of the dialogue model parameters and the policy parameters. In addition, the article presents a variant of the NABC algorithm, called the Natural Belief Critic (NBC), which assumes that the policy is fixed and only the model parameters need to be estimated. The algorithms are evaluated on a spoken dialogue system in the tourist information domain. The experiments show that model parameters estimated to maximize the expected cumulative reward result in significantly improved performance compared to the baseline hand-crafted model parameters. The algorithms are also compared to optimization techniques using plain gradients and state-of-the-art random search algorithms. In all cases, the algorithms based on the natural gradient work significantly better. © 2011 ACM.
Resumo:
Reinforcement techniques have been successfully used to maximise the expected cumulative reward of statistical dialogue systems. Typically, reinforcement learning is used to estimate the parameters of a dialogue policy which selects the system's responses based on the inferred dialogue state. However, the inference of the dialogue state itself depends on a dialogue model which describes the expected behaviour of a user when interacting with the system. Ideally the parameters of this dialogue model should be also optimised to maximise the expected cumulative reward. This article presents two novel reinforcement algorithms for learning the parameters of a dialogue model. First, the Natural Belief Critic algorithm is designed to optimise the model parameters while the policy is kept fixed. This algorithm is suitable, for example, in systems using a handcrafted policy, perhaps prescribed by other design considerations. Second, the Natural Actor and Belief Critic algorithm jointly optimises both the model and the policy parameters. The algorithms are evaluated on a statistical dialogue system modelled as a Partially Observable Markov Decision Process in a tourist information domain. The evaluation is performed with a user simulator and with real users. The experiments indicate that model parameters estimated to maximise the expected reward function provide improved performance compared to the baseline handcrafted parameters. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Modelling dialogue as a Partially Observable Markov Decision Process (POMDP) enables a dialogue policy robust to speech understanding errors to be learnt. However, a major challenge in POMDP policy learning is to maintain tractability, so the use of approximation is inevitable. We propose applying Gaussian Processes in Reinforcement learning of optimal POMDP dialogue policies, in order (1) to make the learning process faster and (2) to obtain an estimate of the uncertainty of the approximation. We first demonstrate the idea on a simple voice mail dialogue task and then apply this method to a real-world tourist information dialogue task. © 2010 Association for Computational Linguistics.
Resumo:
Statistical dialogue models have required a large number of dialogues to optimise the dialogue policy, relying on the use of a simulated user. This results in a mismatch between training and live conditions, and significant development costs for the simulator thereby mitigating many of the claimed benefits of such models. Recent work on Gaussian process reinforcement learning, has shown that learning can be substantially accelerated. This paper reports on an experiment to learn a policy for a real-world task directly from human interaction using rewards provided by users. It shows that a usable policy can be learnt in just a few hundred dialogues without needing a user simulator and, using a learning strategy that reduces the risk of taking bad actions. The paper also investigates adaptation behaviour when the system continues learning for several thousand dialogues and highlights the need for robustness to noisy rewards. © 2011 IEEE.
Resumo:
This work shows how a dialogue model can be represented as a Partially Observable Markov Decision Process (POMDP) with observations composed of a discrete and continuous component. The continuous component enables the model to directly incorporate a confidence score for automated planning. Using a testbed simulated dialogue management problem, we show how recent optimization techniques are able to find a policy for this continuous POMDP which outperforms a traditional MDP approach. Further, we present a method for automatically improving handcrafted dialogue managers by incorporating POMDP belief state monitoring, including confidence score information. Experiments on the testbed system show significant improvements for several example handcrafted dialogue managers across a range of operating conditions.
Resumo:
This paper describes a framework for evaluation of spoken dialogue systems. Typically, evaluation of dialogue systems is performed in a controlled test environment with carefully selected and instructed users. However, this approach is very demanding. An alternative is to recruit a large group of users who evaluate the dialogue systems in a remote setting under virtually no supervision. Crowdsourcing technology, for example Amazon Mechanical Turk (AMT), provides an efficient way of recruiting subjects. This paper describes an evaluation framework for spoken dialogue systems using AMT users and compares the obtained results with a recent trial in which the systems were tested by locally recruited users. The results suggest that the use of crowdsourcing technology is feasible and it can provide reliable results. Copyright © 2011 ISCA.
Resumo:
The optimization of dialogue policies using reinforcement learning (RL) is now an accepted part of the state of the art in spoken dialogue systems (SDS). Yet, it is still the case that the commonly used training algorithms for SDS require a large number of dialogues and hence most systems still rely on artificial data generated by a user simulator. Optimization is therefore performed off-line before releasing the system to real users. Gaussian Processes (GP) for RL have recently been applied to dialogue systems. One advantage of GP is that they compute an explicit measure of uncertainty in the value function estimates computed during learning. In this paper, a class of novel learning strategies is described which use uncertainty to control exploration on-line. Comparisons between several exploration schemes show that significant improvements to learning speed can be obtained and that rapid and safe online optimisation is possible, even on a complex task. Copyright © 2011 ISCA.
Resumo:
A recent trend in spoken dialogue research is the use of reinforcement learning to train dialogue systems in a simulated environment. Past researchers have shown that the types of errors that are simulated can have a significant effect on simulated dialogue performance. Since modern systems typically receive an N-best list of possible user utterances, it is important to be able to simulate a full N-best list of hypotheses. This paper presents a new method for simulating such errors based on logistic regression, as well as a new method for simulating the structure of N-best lists of semantics and their probabilities, based on the Dirichlet distribution. Off-line evaluations show that the new Dirichlet model results in a much closer match to the receiver operating characteristics (ROC) of the live data. Experiments also show that the logistic model gives confusions that are closer to the type of confusions observed in live situations. The hope is that these new error models will be able to improve the resulting performance of trained dialogue systems. © 2012 IEEE.
Resumo:
The partially observable Markov decision process (POMDP) has been proposed as a dialogue model that enables automatic improvement of the dialogue policy and robustness to speech understanding errors. It requires, however, a large number of dialogues to train the dialogue policy. Gaussian processes (GP) have recently been applied to POMDP dialogue management optimisation showing an ability to substantially increase the speed of learning. Here, we investigate this further using the Bayesian Update of Dialogue State dialogue manager. We show that it is possible to apply Gaussian processes directly to the belief state, removing the need for a parametric policy representation. In addition, the resulting policy learns significantly faster while maintaining operational performance. © 2012 IEEE.