525 resultados para Dexamethasone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to evaluate the effects of the barrier agent sodium carboxymethyl cellulose (SCMC) with and without dexamethasone for the prevention of postoperative adhesion formation in a rat model of postoperative peritoneal adhesion. A total of 160 three-month old male and female Wistar rats underwent a laparotomy, and adhesions were induced by ileocecal abrasion. Rats were randomly assigned to 4 groups (n=40 each): group A, untreated; group B, treated with SCMC only; group C1, treated with SCMC + 3 mg dexamethasone, and group C2, treated with SCMC + 8 mg dexamethasone. After 12 days, adhesion formation and histopathological changes were compared. In groups A, B, C1, and C2, the mortality rates were 10, 5, 5, and 5%, respectively. In groups C1 and C2, the adhesions were filmy and easy to dissect and were milder compared with those in groups A and B. The total adhesion score in group C1 (3.38±0.49) was significantly lower than that of group B (6.01±0.57; P<0.01) or group A (8.01±0.67; P<0.05). There was no significant difference in adhesion formation between groups C1 and C2. Compared with groups A and B, groups C1 and C2 exhibited milder histopathological changes. SCMC in combination with dexamethasone can prevent adhesion formation and is a better barrier agent than SCMC alone. The safety and feasibility of SCMC in combination with dexamethasone to prevent adhesion formation after abdominal surgery warrants further clinical study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four cycles of chemotherapy are required to assess responses of multiple myeloma (MM) patients. We investigated whether circulating endothelial progenitor cells (cEPCs) could be a biomarker for predicting patient response in the first cycle of chemotherapy with bortezomib and dexamethasone, so patients might avoid ineffective and costly treatments and reduce exposure to unwanted side effects. We measured cEPCs and stromal cell-derived factor-1α (SDF-1α) in 46 MM patients in the first cycle of treatment with bortezomib and dexamethasone, and investigated clinical relevance based on patient response after four 21-day cycles. The mononuclear cell fraction was analyzed for cEPC by FACS analysis, and SDF-1α was analyzed by ELISA. The study population was divided into 3 groups according to the response to chemotherapy: good responders (n=16), common responders (n=12), and non-responders (n=18). There were no significant differences among these groups at baseline day 1 (P>0.05). cEPC levels decreased slightly at day 21 (8.2±3.3 cEPCs/μL) vs day 1 (8.4±2.9 cEPCs/μL) in good responders (P>0.05). In contrast, cEPC levels increased significantly in the other two groups (P<0.05). SDF-1α changes were closely related to changes in cEPCs. These findings indicate that change in cEPCs at day 21 in the first cycle might be considered a noninvasive biomarker for predicting a later response, and extent of change could help decide whether to continue this costly chemotherapy. cEPCs and the SDF-1α/CXCR4 axis are potential therapeutic targets for improved response and outcomes in MM patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate cortisol suppression following 0.5 mg of dexamethasone (DEX) in trauma survivors (N = 52),with posttraumatic stress disorder (PTSD), major depressive disorder (MDD), both, or neither disorder, and in subjects never exposed to trauma (N = 10), in order to examine interactions between diagnosis and trauma history on cortisol negative feedback inhibition. Method: Lifetime trauma exposure and psychiatric diagnoses were assessed and blood samples were obtained at 8:00 a.m. for the determination of baseline cortisol. Participants ingested 0.5 mg of DEX at 11:00 p.m. and blood samples for determination of cortisol and DEX were obtained at 8:00 a.m. the following day. Results: PTSD was associated with enhanced cortisol suppression in response to DEX Among trauma survivors, the presence of a traumatic event prior to the "focal" trauma had a substantial impact on cortisol suppression in subjects with MDD. Such subjects were more likely to show cortisol alterations similar to those associated with PTSD, whereas subjects with MDD with no prior trauma were more likely to show alterations in the opposite direction, i.e. relative non-suppression. Conclusions: Cortisol hypersuppression in PTSD appears not to be dependent on the presence of traumatic events prior to the focal trauma. However, prior trauma exposure may affect cortisol suppression in MDD. This finding may have implications for understanding why only some depressed patients show non-suppression on the DST. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Enhanced negative feedback and reduced adrenal output are two different models that have been put forth to explain the paradoxical observations of increased release of corticotropin-releasing factor in the face of low cortisol levels in posttraumatic stress disorder (PTSID). To discriminate between these models, the authors measured levels of adrenocorticopic hormone (ACTH) and cortisol at baseline and in response to dexamethasone in medically healthy subjects with and without PTSID. Under conditions of enhanced negative feedback inhibition, ACTH levels would not be altered relative to cortisol levels, but the ACTH response to dexamethasone would be augmented, in concert with the enhanced cortisol response to dexamethasone. In contrast, under conditions of reduced adrenal output, ACTH levels would be expected to be higher at baseline relative to cortisol levels, but the ACTH response to dexamethasone would be unchanged in PTSID relative to healthy comparison subjects. Method: The ACTH and cortisol responses to 0.50 mg of dexamethasone were assessed in 19 subjects (15 men and four women) with PTSID and 19 subjects (14 men and five women) without psychiatric disorder. Results: The ACTH-to-cortisol ratio did not differ between groups before or after dexamethasone, but the subjects with PTSD showed greater suppression of ACTH (as well as cortisol) in response to dexamethasone. Conclusions: The data support the hypothesis of enhanced cortisol negative feedback inhibition of ACTH secretion at the level of the pituitary in PTSD. Pituitary glucocorticoid receptor binding, rather than low adrenal output, is implicated as a likely mechanism for this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinze eqüinos machos, da raça Mangalarga, com idades entre dois e três anos, foram utilizados para se avaliar os possíveis efeitos clínicos benéficos da administração de dexametasona ou diclofenaco sódico durante a endotoxemia experimental em eqüinos. Os animais foram divididos em três grupos de cinco animais cada: controle (C), diclofenaco sódico (SD) e dexametasona (DM). Todos os grupos receberam 0,1µg/kg de lipopolissarídeo de Escherichia coli 055:B5, durante 15 minutos, por via intravenosa mais: grupo SD - 2,2mg/kg de SD, por via oral, 60 minutos antes da infusão da endotoxina; grupo DM - 1,1mg/kg, por via intravenosa, 30 minutos antes da endotoxina; grupo C - 20ml de NaCl 0,9%, por via intravenosa, 30 minutos antes da endotoxina. O SD não preveniu a leucopenia, neutropenia e linfopenia ocorridas três horas após a indução da endotoxemia, porém a DM atenuou essas alterações. As taxas de proteínas plasmática e peritoneal, a concentração de glicose e de fósforo inorgânico e a contagem de células nucleadas totais peritoneais mantiveram-se inalteradas. O diclofenaco foi eficaz na prevenção da febre e alterações nos borborigmos intestinais enquanto que a dexametasona bloqueou as alterações no número de células inflamatórias em relação ao grupo controle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Augmented glucose-stimulated insulin secretion (GSIS) is an adaptive mechanism exhibited by pancreatic islets from insulin-resistant animal models. Gap junction proteins have been proposed to contribute to islet function. As such, we investigated the expression of connexin 36 (Cx36), connexin 43 (Cx43), and the glucose transporter Glut2 at mRNA and protein levels in pancreatic islets of dexamethasone (DEX)-induced insulin-resistant rats. Study rats received daily injections of DEX (1 mg/kg body mass, i.p.) for 5 days, whereas control rats (CTL) received saline solution. DEX rats exhibited peripheral insulin resistance, as indicated by the significant postabsorptive insulin levels and by the constant rate for glucose disappearance (K-ITT). GSIS was significantly higher in DEX islets (1.8-fold in 16.7 mmol/L glucose vs. CTL, p < 0.05). A significant increase of 2.25-fold in islet area was observed in DEX vs. CTL islets (p < 0.05). Cx36 mRNA expression was significantly augmented, Cx43 diminished, and Glut2 mRNA was unaltered in islets of DEX vs. CTL (p < 0.05). Cx36 protein expression was 1.6-fold higher than that of CTL islets (p < 0.05). Glut2 protein expression was unaltered and Cx43 was not detected at the protein level. We conclude that DEX-induced insulin resistance is accompanied by increased GSIS and this may be associated with increase of Cx36 protein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of dexamethasone (Dex) on the metabolic parameters, peripheral insulin, and glucose sensitivity in vivo as well as on islet function ex vivo of rats submitted to low-protein diet were analyzed. Dexamethasone (1.0 mg/kg body weight) was administered intraperitoneally daily to adult Wistar rats fed on a normal-protein diet or low-protein diet (LPD) for 5 days, whereas control rats fed on a normal-protein diet or low-protein diet (LP) received saline alone. At the end of the experimental period, LP rats showed a significant reduction in serum insulin, total serum protein, and serum albumin levels compared with rats fed on a normal-protein diet (P < .05). All these parameters tended to be normalized in LPD rats (P < .05); furthermore, these rats exhibited increased serum glucose and nonesterified fatty acid levels compared with LP rats (P < .05). Rats submitted to the low-protein diet demonstrated normal peripheral glucose sensitivity and improved peripheral insulin sensitivity, which was reversed by Dex treatment. A reduced area of islets from LP rats was partially recovered in LPD rats (P < .05). At 16.7 mmol/L glucose, insulin secretion from LPD islets was also partially recovered and was significantly higher than that from LP islets (P < .05). In conclusion, induction of insulin resistance by Dex treatment reverses most of the metabolic alterations in rats submitted to a low-protein diet. In addition, several islet functions were also improved by Dex, confirming the plasticity of pancreatic islets in adverse conditions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: We have analyzed the peripheral insulin and glucose sensitivity in vivo, and islet function ex vivo in rats with different degrees of insulin resistance induced by dexamethasone (DEX).Methods: Dexamethasone, in the concentrations of 0.1 (DEX 0.1), 0.5 (DEX 0.5), and 1.0 mg/kg body weight (DEX 1.0) was administered daily, intraperitoneally, to adult Wistar rats for 5 days, whereas controls received saline.Results: Dexamethasone treatment induced peripheral insulin resistance in a dose-dependent manner. At the end of the treatment, only DEX 1.0 rats showed significant increase of postabsorptive blood glucose and serum triglycerides, and nonesterified fatty acids levels. Incubation of pancreatic islets in increasing glucose concentrations (2.8-22 mM) led to an augmented insulin secretion in all DEX-treated rats. Leucine, carbachol, and high KCl concentrations induced the insulin release in DEX 0.5 and DEX 1.0, whereas arginine augmented secretion in all DEX-treated groups.Conclusions: We demonstrate that in DEX 0.5 and, especially in DEX 0.1 groups, but not in DEX 1.0, the adaptations that occurred in the endocrine pancreas are able to counteract metabolic disorders (glucose intolerance and dyslipidemia). These animal models seem to be interesting approaches for the study of degrees of subjacent effects that may mediate type 2 diabetes (DEX 1.0) and islet function alterations, without collateral effects (DEX 0.1 and DEX 0.5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)