925 resultados para Detergent Additives
Resumo:
The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.
Resumo:
The effects of three non-nutrient additives on nonspecific immunity and growth of juvenile turbot (Scophthalmus maximus L.) were studied in this feeding experiment. The five treatments are basal diet alone, basal diets containing three different additives [0.4 g kg(-1) of xylo-oligosaccharides (XOS), 1.3 g kg (-1) of yeast cell wall and 0.8 g kg (-1) of bile acids] individually or in combination. Two hundred and twenty-five turbots (average initial weight 151.3 +/- 11.3 g) were randomly allotted in five treatments with three replicates within each treatment in a 72-day period. Comparing with basal diet group, activities of C3, C4, phagocyte, lysozyme, specific growth rate and feed conversion rate in yeast cell wall, XOS and the combined groups was enhanced significantly (P < 0.05); however, these parameters in bile acid groups were increased slightly (P > 0.05) except for phagocyte (P < 0.05); superoxide dismutase activity in additive groups was not significantly increased (P > 0.05) except for the combined group (P < 0.05). In conclusion, supplementation of yeast cell wall and XOS enhanced the nonspecific immunity of juvenile turbot. Synergistic or additive effect of the three additives was not observed.
Resumo:
The catalytic and accelerating effects of three coal-burning additives (CBA) on the burning of graphite were studied with the help of thermogravimetric (TG) analysis. The kinetic study on the catalytic oxidation of the graphite doped with CBA was carried out and the results were presented. The results show that the CBA can change the carbon oxidation/combustion course by catalytic action and change the activation energy, thus improving the combustion efficiency.
Resumo:
The addition of ZnO or ZrO2 into CuO/HZSM-5 was investigated for DME synthesis from syngas by using the reactive frontal chromatography method, TPR and in situ TPR. These promoters enhanced the catalytic activity of Cu/HZSM-5 and promotion with ZnO and ZrO2 produced a maximum activity, which could be explained by the improvement of the dispersion of Cu and the promotion of CuO reduction. The Cu+ species existing during the reaction have been detected, based on which a Cu-0 <-> Cu+1 redox cycle model was put forward.
Resumo:
Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modified by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability was evaluated by using agar plate tests with the fungi Aspergillus niger ATCC16404, the Gram-negative bacteria Pseudomonas aeruginosa ATCC9027 and an association of both (consortium), and soil tests at 37 °C and 58 °C. The obtained results evidenced a positive effect of the tested biobased additives, the most favourable results being registered with lignin. These results were corroborated by the structural modifications observed by FTIR analysis. Additionally, mechanical tests prove the suitability of using the lignin modified TPUs for footwear outsoles production.
Resumo:
Conservators have long been aware of the problems associated with the preservation of rubber objects due to inherent instability that can be attributed, in part, to the presence of additives. Inorganic additives, such as fillers, accelerators, stabilizers, and special ingredients are necessary in manufacturing to alter the properties of natural rubber. These materials all have different interactions with the rubber, and each other, and differing effects on the ageing process. To date, the most effective and accepted methods to preserve rubber are cold, dark storage of objects, or the use of low oxygen environments. While these methods are effective, they greatly limit access. The application of coatings to the surface of rubber objects can slow deterioration and greatly increase the ability of an institution to handle and display rubber objects. While numerous coatings for preventive and interventive treatment have been tested, none have been so successful to warrant routine use. The first section of this research highlighted the relationship between the inclusion of certain additives in natural rubber objects and the accelerated or slowed down overall degradation. In the second part of this research, the acrylic varnishes Golden Polymer Varnish with UVLS, Lascaux Acrylic Transparent Varnish-UV, Sennelier Matte Lacquer with UV Protection, and Liquitex Soluvar Varnish containing ultraviolet light absorbers or stabilizers were tested as a preventative coating for rubber. Through testing the visual and physical properties of the samples, as well as compound analysis the results of this research suggest that acrylic varnishes do provide protection, each to varying degrees. The results also provided insight into the behavior of rubber and these varnishes with continuing light exposure.
Resumo:
The ionic liquid (IL) 1-butyl-3-methylimidazolium chloride was used as a drying control chemical additive in the synthesis of silica sol-gel materials with and without methanol as a co-solvent. The resulting gels were characterized by using thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy and water sorption kinetics. Calcined gels were analyzed using scanning electron microscopy and nitrogen adsorption isotherms for surface area and pore volume determination. Non-calcined gels were monolithic and showed general cloudiness with lesser degrees observed at higher IL volumes. Calcinations resulted in the formation of powders with increased available surface area as the amount of IL volume was increased. This is consistent with an increase in respective pore volume but a general decrease in average pore size. The resulting materials exhibited conventional structural microdomains, in contrast to periodicity reported when other ionic liquids were used as templates.