887 resultados para Design of Experiment
Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64
Resumo:
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective ""CORE-64"" trial (""Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors""). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Resumo:
Various members of the bZip and bHLH-Zip families of eukaryotic transcription factors, including Jun, Fos, and Myc, have been identified as oncoproteins; mutation or deregulated expression of these proteins leads to certain types of cancer. These proteins can only bind to their cognate DNA enhancer sites following homodimerization, or heterodimerization with another family member, via their leucine zipper domain. Thus, a novel anticancer strategy would be to inhibit dimerization of these proteins, thereby blocking their DNA binding and transactivation functions. In this paper we show that it is possible to rationally design leucine zipper peptides that bind with high affinity to the leucine zipper dimerization domains of c-Jun and c-Fos, thus preventing the formation of functional c-Jun homodimers and c-Jun:c-Fos heterodimers; we refer to such peptides as superzippers (SZs). In vivo, c-Jun:SZ and c-Fos:SZ heterodimers should be nonfunctional as they lack one of the two basic domains that are essential for DNA binding. While the transport of a peptidic agent into cells often poses a severe obstacle to its therapeutic use, we show that a 46-residue leucine zipper peptide can be transported into HeLa cells by coupling it to a 17-residue carrier peptide from the Antennapedia homeodomain, thus paving the way for detailed studies of the therapeutic potential of superzipper peptides.
Resumo:
Background Benznidazole is effective for treating acute and chronic (recently acquired) Tryponosoma cruzi infection (Chagas` disease). Recent data indicate that parasite persistence plays a pivotal role in the pathogenesis of chronic Chagas` cardiomyopathy. However, the efficacy of trypanocidal therapy in preventing clinical complications in patients with preexisting cardiac disease is unknown. Study Design BENEFIT is a multicenter, randomized, double-blind, placebo-controlled clinical trial of 3,000 patients with Chagas` cardiomyopathy in Latin America. Patients are randomized to receive benznidazole (5 mg/kg per day) or matched placebo, for 60 days. The primary outcome is the composite of death; resuscitated cardiac arrest; sustained ventricular tachycardia; insertion of pacemaker or cardiac defibrillator; cardiac transplantation; and development of new heart failure, stroke, or systemic or pulmonary thromboembolic events. The average follow-up time will be 5 years, and the trial has a 90% power to detect a 25% relative risk reduction. The BENEFIT program also comprises a substudy evaluating the effects of benznidazole on parasite clearance and an echo substudy exploring the impact of etiologic treatment on left ventricular function. Recruitment started in November 2004, and >1,000 patients have been enrolled in 35 centers from Argentina, Brazil, and Colombia to date. Conclusion This is the largest trial yet conducted in Chagas` disease. BENEFIT will clarify the role of trypanocidal therapy in preventing cardiac disease progression and death.
Resumo:
This article discusses the design of a comprehensive evaluation of a community development programme for young people 'at-risk' of self-harming behaviour. It outlines considerations in the design of the evaluation and focuses on the complexities and difficulties associated with the evaluation of a community development programme. The challenge was to fulfil the needs of the funding body for a broad, outcome-focused evaluation while remaining close enough to the programme to accurately represent its activities and potential effects at a community level. Specifically, the strengths and limitations of a mixed-method evaluation plan are discussed with recommendations for future evaluation practice.
Resumo:
1. There are a variety of methods that could be used to increase the efficiency of the design of experiments. However, it is only recently that such methods have been considered in the design of clinical pharmacology trials. 2. Two such methods, termed data-dependent (e.g. simulation) and data-independent (e.g. analytical evaluation of the information in a particular design), are becoming increasingly used as efficient methods for designing clinical trials. These two design methods have tended to be viewed as competitive, although a complementary role in design is proposed here. 3. The impetus for the use of these two methods has been the need for a more fully integrated approach to the drug development process that specifically allows for sequential development (i.e. where the results of early phase studies influence later-phase studies). 4. The present article briefly presents the background and theory that underpins both the data-dependent and -independent methods with the use of illustrative examples from the literature. In addition, the potential advantages and disadvantages of each method are discussed.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Two hazard risk assessment matrices for the ranking of occupational health risks are described. The qualitative matrix uses qualitative measures of probability and consequence to determine risk assessment codes for hazard-disease combinations. A walk-through survey of an underground metalliferous mine and concentrator is used to demonstrate how the qualitative matrix can be applied to determine priorities for the control of occupational health hazards. The semi-quantitative matrix uses attributable risk as a quantitative measure of probability and uses qualitative measures of consequence. A practical application of this matrix is the determination of occupational health priorities using existing epidemiological studies. Calculated attributable risks from epidemiological studies of hazard-disease combinations in mining and minerals processing are used as examples. These historic response data do not reflect the risks associated with current exposures. A method using current exposure data, known exposure-response relationships and the semi-quantitative matrix is proposed for more accurate and current risk rankings.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.