878 resultados para Design challenges
Resumo:
This chapter focuses on demonstrating the role of Design-Led Innovation (DLI) as an enabler for the success of Small to Medium Enterprises (SMEs) within high growth environments. This chapter is targeted toward businesses that may have been exposed to the concept of design previously at a product level and now seek to better understand its value through implementation at a strategic level offering. The decision to engage in the DLI process is made by firms who want to remain competitive as they struggle to compete in high cost environments, such as the state of the Australian economy at present. The results presented in this chapter outline the challenges in the adoption of the DLI process and the implications it can have. An understanding of the value of DLI in practice—as an enabler of business transformation in Australia—is of benefit to government and the broader design community.
Resumo:
This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.
Resumo:
The Silent Aircraft Initiative goal is to design an aircraft that is imperceptible above background noise outside the airport boundary. The aircraft that fulfils this objective must also be economically competitive with conventional aircraft of the future and therefore fuel consumption and mechanical reliability are key considerations for the design. To meet these ambitious targets, a multi-fan embedded turbofan engine with boundary layer ingestion has been proposed. This configuration includes several new technologies including a variable area nozzle, a complex high-power transmission system, a Low Pressure turbine designed for low-noise, an axial-radial HP compressor, advanced acoustic liners and a low-speed fan optimized for both cruise and off-design operation. These technologies, in combination, enable a low-noise and fuel efficient propulsion system but they also introduce significant challenges into the design. These challenges include difficulties in predicting the noise and performance of the new components but there are also challenges in reducing the design risks and proving that the new concepts are realizable. This paper presents the details of the engine configuration that has been developed for the Silent Aircraft application. It describes the design approach used for the critical components and discusses the benefits of the new technologies. The new technologies are expected to offer significant benefits in noise reduction without compromising fuel burn. However, more detailed design and further research are required to fully control the additional risks generated by the system complexity.
Resumo:
Today most of the IC and board designs are undertaken using two-dimensional graphics tools and rule checks. System-in-package is driving three-dimensional design concepts and this is posing a number of challenges for electronic design automation (EDA) software vendors. System-in-package requires three-dimensional EDA tools and design collaboration systems with appropriate manufacturing and assembly rules for these expanding technologies. Simulation and Analysis tools today focus on one aspect of the design requirement, for example, thermal, electrical or mechanical. System-in-Package requires analysis and simulation tools that can easily capture the complex three dimensional structures and provided integrated fast solutions to issues such as thermal management, reliability, electromagnetic interference, etc. This paper discusses some of the challenges faced by the design and analysis community in providing appropriate tools to engineers for System-in-Package design
Resumo:
Purpose – To present key challenges associated with the evolution of system-in-package technologies and present technical work in reliability modeling and embedded test that contributes to these challenges. Design/methodology/approach – Key challenges have been identified from the electronics and integrated MEMS industrial sectors. Solutions to optimising the reliability of a typical assembly process and reducing the cost of production test have been studied through simulation and modelling studies based on technology data released by NXP and in collaboration with EDA tool vendors Coventor and Flomerics. Findings – Characterised models that deliver special and material dependent reliability data that can be used to optimize robustness of SiP assemblies together with results that indicate relative contributions of various structural variables. An initial analytical model for solder ball reliability and a solution for embedding a low cost test for a capacitive RF-MEMS switch identified as an SiP component presenting a key test challenge. Research limitations/implications – Results will contribute to the further development of NXP wafer level system-in-package technology. Limitations are that feedback on the implementation of recommendations and the physical characterisation of the embedded test solution. Originality/value – Both the methodology and associated studies on the structural reliability of an industrial SiP technology are unique. The analytical model for solder ball life is new as is the embedded test solution for the RF-MEMS switch.
Resumo:
Product knowledge support needs are compared in two companies with different production volumes and product complexity. Knowledge support requirements identified include: function, performance data, requirements data, common parts, regulatory guidelines and layout data. A process based data driven knowledge reuse method is evaluated in light of the identified product knowledge needs. The evaluation takes place through developing a pilot case with each company. It is found that the method provides more benefit to the high complexity design domain, in which a significant amount of work takes place at the conceptual design stages, relying on a conceptual product representation. There is not such a clear value proposition in a design environment whose main challenge is layout design and the application of standard parts and features. The method supports the requirement for conceptual product representation but does not fully support a standard parts library.