1000 resultados para Denture base reline
Resumo:
The aim of this study was to evaluate the hardness, roughness and mass loss of an acrylic denture base resin after in vitro exposure to four disinfectant solutions. Forty specimens (Clássico, Brazil) were prepared and randomly assigned to 4 groups n = 10) according to the disinfectant solution: G1: control, stored in distilled water at 37 degrees C; G2: 1% sodium hypochlorite; G3: 2% glutaraldehyde; G4: 4% chlorhexidine. G2 to G4 were immersed for 60 minutes in the disinfectant solution. Measurements were carried out both before and after immersion in the solution. The surface was analyzed with a surface roughness tester (Surfcorder SE 1700 KOZAKALAB), a microdurometer FM-700 (Future Tech) and a scanning electron microscope (DSM 962-ZEISS). Loss of mass was determined with a digital weighing scale. After disinfection procedures, values were analyzed statistically. The acrylic denture base resin may be vulnerable to surface changes after in vitro immersion in the disinfectant solutions studied.
Resumo:
Objective: This study investigated the effect of experimental photopolymerized coatings, containing zwitterionic or hydrophilic monomers, on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Methods: Acrylic specimens were prepared with rough and smooth surfaces and were either left untreated (control) or coated with one of the following experimental coatings: 2-hydroxyethyl methacrylate (HE); 3-hydroxypropyl methacrylate (HP); and 2-trimethylammonium ethyl methacrylate chloride (T); and sulfobetaine methacrylate (S). The concentrations of these constituent monomers were 25%, 30% or 35%. Half of the specimens in each group (control and experimentals) were coated with saliva and the other half remained uncoated. The surface free energy of all specimens was measured, regardless of the experimental condition. C. albicans adhesion was evaluated for all specimens, both saliva conditioned and unconditioned. The adhesion test was performed by incubating specimens in C. albicans suspensions (1 × 10 7 cell/mL) at 37 °C for 90 min. The number of adhered yeasts were evaluated by XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[{phenylamino} carbonyl]-2H-tetrazolium-hydroxide) method. Results: For rough surfaces, coatings S (30 or 35%) and HP (30%) resulted in lower absorbance values compared to control. These coatings exhibited more hydrophilic surfaces than the control group. Roughness increased the adhesion only in the control group, and saliva did not influence the adhesion. The photoelectron spectroscopy analysis (XPS) confirmed the chemical changes of the experimental specimens, particularly for HP and S coatings. Conclusions: S and HP coatings reduced significantly the adhesion of C. albicans to the acrylic resin and could be considered as a potential preventive treatment for denture stomatitis. © 2012 Elsevier Ltd.
Resumo:
This study evaluated the potential of plasma treatments to modify the surface chemistry and hydrophobicity of a denture base acrylic resin to reduce the Candida glabrata adhesion. Specimens (n=54) with smooth surfaces were made and divided into three groups (n=18): control - non-treated; experimental groups - submitted to plasma treatment (Ar/50W; AAt/130W). The effects of these treatments on chemical composition and surface topography of the acrylic resin were evaluated. Surface free energy measurements (SFE) were performed after the treatments and after 48h of immersion in water. For each group, half (n=9) of the specimens were preconditionated with saliva before the adhesion assay. The number of adhered C. glabrata was evaluated by cell counting after crystal violet staining. The Ar/50W and AAt/130W treatments altered the chemistry composition, hydrophobicity and topography of acrylic surface. The Ar/50W group showed significantly lower C. glabrata adherence than the control group, in the absence of saliva. After preconditioning with saliva, C. glabrata adherence in experimental and control groups did not differ significantly. There were significant changes in the SFE after immersion in water. The results demonstrated that Ar/50W treated surfaces have potential for reducing C. glabrata adhesion to denture base resins and deserve further investigation, especially to tailor the parameters to prolong the increased wettability. © 2012 Blackwell Verlag GmbH.
Resumo:
The purpose of this study was to investigate the effect of thermal cycling and disinfection on the microhardness of acrylic resins denture base. Four different brands of acrylic resins were evaluated: Onda Cryl, QC 20, Classico and Lucitone. Each brand of acrylic resin was divided into four groups (n = 7) according to the disinfection method (microwave, Efferdent, 4% chlorhexidine and 1% hypochlorite). Samples were disinfected during 60 days. Before and after disinfection, samples were thermal cycled between 5-55 °C with 30-s dwell times for 1000 cycles. The microhardness was measured using a microhardener, at baseline (B), after first thermal cycling (T1), after disinfection (D) and after second thermal cycling (T2). The microhardness values of all groups reduced over time. QC-20 acrylic resin exhibited the lowest microhardness values. At B and T1 periods, the acrylic resins exhibited statistically greater microhardness values when compared to D and T2 periods. It can be concluded that the microhardness values of the acrylic resins denture base were affected by the thermal cycling and disinfection procedures. However, all microhardness values obtained herein are within acceptable clinical limits for the acrylic resins. © 2013 Informa UK Ltd.
Resumo:
The aim of the present study was to assess the shear bond strength between a heat-polymerized denture base resin and acrylic resin teeth after immersion in different denture cleansers by simulating a 180-day use. Two acrylic teeth (Biotone, Biotone IPN, Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil) were chosen for bonding to a heat-polymerized denture base resin (Lucitone 550- Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil). Eighty specimens were produced and divided into eight groups (n=10) according to their experimental condition (distilled water, 2% chlorhexidine digluconate, 1% sodium hypochlorite and Corega Tabs). Shear bond strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Student-Newman-Keuls' multiple comparisons post hoc analysis (α=.05). The shear bond strength results revealed statistically significant differences between the groups. For the Biotone IPN tooth, significantly lower shear bond strength values were found for the group immersed in sodium-perborate solution (4.48±2.18 MPa) than for the group immersed in distilled water (control group) (10.83±1.84 MPa). For Biotone, significantly higher bond strength values (10.04±3.28 MPa) were found for the group immersed in Corega Tabs than for the control group (5.45±2.93 MPa). The immersion in denture cleanser solutions was more detrimental to the conventional acrylic denture tooth (Biotone) than to the highly cross-linked denture tooth (Biotone IPN). However, this effect was not observed for the groups immersed in Corega Tabs solution, regardless of the type of denture tooth. © 2013 Elsevier Ltd.
Resumo:
Purpose: The objectives of this study were to investigate the flexural strength (FS) and chemical interaction between 2-tert-butylaminoethyl methacrylate (TBAEMA) and a denture base acrylic resin. Materials and Methods: Specimens were divided into five groups according to the concentration of TBAEMA incorporated in acrylic resin Onda-Cryl (0%, 1%, 2%, 3%, 4%) and were submitted to Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (XPS-ESCA), and differential scanning calorimetry (DSC) analyses. FS of the specimens was tested, and results were analyzed by ANOVA/Tukey's test (α < 0.05). Results: Different nitrogen ratios were observed on specimens' surfaces: 0.36%, 0.54%, 0.35%, and 0.20% for groups 1%, 2%, 3%, and 4%, respectively. FTIR indicated copolymerization of acrylic resin and TBAEMA, and DSC results demonstrated a decrease in glass transition temperature (Tg). Significant differences were found for FS (p < 0.05). The mean values were 91.1 ± 5.5,A 77.0 ± 13.1,B 67.2 ± 12.5,B 64.4 ± 13.0,B and 67.2 ± 5.9B MPa for groups 0%, 1%, 2%, 3% and 4%, respectively (same superscript letters indicate no significant difference). Conclusions: The incorporation of TBAEMA in acrylic resin resulted in copolymerization and the presence of amine groups on specimens' surfaces, and in decreases of Tg and FS. © 2012 by the American College of Prosthodontists.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aim: The role of saliva on Candida adhesion to biomaterials has not been clearly defined. The present study investigates whether different periods of preconditioning with saliva would influence the adhesion of Candida albicans to a denture base resin. Methods: Ninety samples of acrylic resin with smooth surfaces were made and then divided into five groups: one control without saliva, and four experimental groups conditioned in saliva for periods of 30 min, 1, 3, or 12 h. Candida adhesion was evaluated by crystal violet staining and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-([phenylamino] carbonyl)-2H-tetrazolium-hydroxide assay. Results: The one-way analysis of variance revealed that there were no significant differences among the mean number of adherent cells or among the mean absorbance for all groups. No significant correlation was found between the two methods used for assessing Candida albicans adhesion. Conclusion: The different periods of preconditioning with saliva had no significant influence on the adhesion of Candida albicans to the denture base acrylic resin.
Resumo:
Objective In studies on Candida albicans adhesion to surfaces, diverse protocols have been used for collection and preparation of saliva samples. Thus, this study investigated whether variations in the centrifugation parameters and number of donors of saliva would influence the adhesion of C. albicans to a denture base resin. Methods Resin acrylic samples (n = 72) were made and then divided into four groups: (a) control – specimens were left without preconditioning in saliva; (b) three experimental groups, in which the specimens were preconditioned with saliva collected from 15 volunteers and centrifuged at 12 000 g for 5 min (G1); from 15 volunteers and centrifuged at 18 000 g for 30 min (G2); and from one volunteer and centrifuged at 12 000 g for 5 min (G3). Candida adhesion was evaluated by both the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction method and crystal violet staining. Data were analyzed by one-way analyses of variance (P = 0.05). Results For XTT reduction assay, groups G2, G3, and control were not significantly different, whereas group G1 showed significantly higher absorbance value than control. For crystal violet staining there were no significant differences among all groups. Conclusion Variations in the centrifugation parameters and number of donors of saliva may influence C. albicans adhesion to denture base resins.
Resumo:
Aim The aim of the present study was to evaluate the effect of surface roughness (roughness average [Ra] μm) on the hydrophobicity of a denture-base acrylic resin and the initial adherence and biofilm formation of Candida albicans (C. albicans). Methods Disk-shaped specimens were divided into six groups: Ra 0.05, Ra 0.2, Ra 0.4, Ra 0.8, Ra 1.5, and Ra 3.0. Water contact angles (WCA) were measured, and the specimens incubated with C. albicans for 90 min (initial adherence, n = 108) or 48 h (biofilm formation, n = 108). Adhered and biofilm cells were evaluated by c.f.u./mL and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), and the correlation between the two methods was evaluated. The surface of the specimens and cells (adhered and biofilm) were also analyzed by scanning electron microscopy (SEM). Results Groups Ra 0.05 and 3.0 exhibited the lowest (~75°) and the highest (~100°) WCA mean values, respectively. For both initial adherence and biofilm formation, no statistically-significant differences were observed among all groups, as determined by c.f.u./mL and XTT. A positive correlation between these two methods was found. SEM analysis showed the presence of scratches and valleys on the acrylic specimens and densely-packed yeast cells covering the entire surface. Conclusions Roughness significantly increased hydrophobicity (WCA), but had no effect on the number and metabolic activity of adherent and biofilm cells of C. albicans.
Resumo:
The purpose of this study was to evaluate the effectiveness of complementary heat treatment and water storage in reducing cytotoxicity of acrylic resins denture bases used in Brazil by the MTT assay. Material and Methods: First, nine specimens were fabricated from metal matrix in the form of discs with 14 mm in diameter and 1.2 mm of thick. Immediately after making, 24 or 48 hours after storage in distilled water, the samples of heat-polymerized resins were divided into 3 groups (n = 3) according to the type of thermal treatment: Group 1: samples were individually exposed to microwave energy (500 W for 3 minutes); Group 2: samples were immersed in water at 550 C for 60 minutes; Group 3: samples did not receive heat treatment. To prepare the extracts, 3 samples of each group were placed into vials containing 3 mL of culture medium and stored at 37°C for 24 hours. L929 cells were used and the MTT assay was performed to analyze the cellular metabolism. Two-factor analysis of variance was used to detect significant among groups at 5% significance. Results: After statistical analysis, the materials were classified according to the cytotoxic effect: non-cytotoxic, slightly cytotoxic; moderately cytotoxic; and strongly cytotoxic. The results showed that the resins ranged from moderately cytotoxic to non-cytotoxic, but no statistically significant difference among experimental groups. Furthermore, the water storage and thermal treatments reduced the cytotoxicity of the resins. Conclusions: It was concluded that the resins studied are potentially toxic and that treatments can decrease their cytotoxicity.
Resumo:
This work examined the histological effects, on the rat palatal mucosa, of a denture base acrylic resin, submitted or not to a post-polymerization heat-treatment. Methods: Fifteen adult female Wistar rats, with sixty days old, weighting 150 g – 250 g were divided in G1: animals being maintained under the same conditions as the experimental groups following described, but without the use acrylic palatal plates (control group); G2: use of heat-polymerized acrylic resin palatal plates made of Lucitone 550; G3: use of palatal plates identical to G2, but subjected to a post-polymerization treatment in a water bath at 55°C for 60 min. The plates covered all the palate and were fixed in the molar region with light-cured resin, thus being kept there for 14 days. After the sacrifice, the palate was removed, fixed in formaldehyde 10% and decalcified with EDTA. Sections were stained using haematoxylin and eosin. Images in duplicate were made from the central region of the cuts, to measure the thickness (μm) of the keratin layers (TKC), epithelium total (TET) and connective tissue (TCC). Statistical analyses were carried out by one-way ANOVA and Tukey post-tests (α=0.05). Results: According to the results there was significant difference in the thickness of keratin between G2 and G3, with G1 having the intermediate value and similar to the other groups. There was a significant difference in the connective tissue with G3
Resumo:
Acrylic resin is a widely used material in clinical practice, and a satisfactory biocompatibility is essential. When the resin polymerization reaction is incomplete, residual monomers are released into the oral cavity. The aim of this study was to evaluate, through a literature review, the cytotoxicity caused by the denture base acrylic resin used, and its components. The selection of published studies was performed on the Pubmed database from January 2008 to July 2013. The keywords used were: cytotoxicity and acrylic resins, cytotoxicity and denture base resins and cytotoxicity and oral prosthesis. Inclusion criteria were: in vitro studies and literature reviews published in English that evaluated the acrylic resin cytotoxicity for denture base and its components. Studies with no reference to the search strategy were excluded. A total of 182 articles were found. Among these, only 13 were included for writing this review. The MTT test is the most common test used to evaluate acrylic resin cytotoxicity. Auto-polymerized resin is more cytotoxic than heat-polymerized resin because of its higher quantity of residual monomers which cause cell and tissue changes in the oral mucosa. However, more studies are necessary for the development of biocompatible materials.
Resumo:
To evaluate the bond strength between two types of acrylic resin teeth and a microwave denture base resin after immersion in disinfectant solutions for 180 days. Eighty specimens made of acrylic resin teeth (Biotone and Biotone IPN) attached to a microwave polymerized denture base resin (Nature-Cryl MC) were divided into eight groups (n = 10) according to the treatment (distilled water-control, 2% chlorhexidine digluconate, 1% sodium hypochlorite and sodium perborate solution-Corega Tabs). The shear strength tests (MPa) were carried out using a universal testing machine with a 0.5 mm/min speed. Data analysis was performed using ANOVA and multiple comparison Student-Newman-Keuls post hoc test (α = 0.05). Biotone IPN showed similar results among the groups (distilled water, 8.25 ± 1.81 MPa; chlorhexidine, 7.81 ± 3.34 MPa; hypochlorite, 7.75 ± 3.72 MPa; and Corega Tabs, 7.58 ± 2.27 MPa, whereas Biotone showed significantly lower shear bond strength values for the groups immersed in Corega Tabs (5.25 ± 3.27 MPa) and chlorhexidine (6.08 ± 2.35 MPa). Soaking the dentures in 1% sodium hypochlorite could be recommended as a disinfectant solution for dentures fabricated with conventional acrylic resin denture teeth and microwave denture base resin. For dentures fabricated with IPN teeth and microwave denture base resin, all the soaking solutions evaluated in this study could be suggested to denture wearers.