983 resultados para Density functional theory methods
Density functional theory study of triangular molybdenum sulfide nanocluster and CO adsorption on it
Resumo:
Molybdenum phosphide (MoP) and supported molybdenum phosphide (MoP/gamma-Al2O3) have been prepared by the temperature-programmed reduction method. The surface sites of the MoP/gamma-Al2O3 catalyst were characterized by carbon monoxide (CO) adsorption with in situ Fourier transform infrared (FT-IR) spectroscopy. A characteristic IR band at 2037 cm(-1) was observed on the MoP/gamma-Al2O3 that was reduced at 973 K. This band is attributed to linearly adsorbed CO on Mo atoms of the MoP surface and is similar to IR bands at 2040-2060 cm(-1), which correspond to CO that has been adsorbed on some noble metals, such as platinum, palladium, and rhodium. Density functional calculations of the structure of molybdenum phosphides, as well as CO chemisorption on the MoP(001) surface, have also been studied on periodic surface models, using the generalized gradient approximation (GGA) for the exchange-correlation functional. The results show that the chemisorption of CO on MoP occurred mainly on top of molybdenum, because the bonding of CO requires a localized mininum potential energy. The adsorption energy obtained is DeltaH(ads) approximate to -2.18 eV, and the vibrational frequency of CO is 2047 cm-1, which is in good agreement with the IR result of CO chernisorption on MoP/gamma-Al2O3.
Resumo:
In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.
Resumo:
The reaction mechanism of Pd(O)-catalyzed allenes silastannation reaction is investigated by the density functional method B3LYP. The overall reaction mechanism is examined. For the allene insertion step, the Pd-Si bond is preferred over the Pd-Sn bond. The electronic mechanism of the allene insertion into Pd-Si bond to form sigma-vinylpalladium (terminal-insertion) and sigma-allylpalladium (internal-insertion) insertion products is discussed ill terms of the electron donation and back-donation. It is found that the electron back-donation is significant for both terminal- and internal-insertion. During allene insertion into Pd-Si bond, internal-insertion is preferred over terminal-insertion. By using methylallene, the regio-selectivity for the monosubstituted allene insertion into Pd-Si and Pd-Sn bond is analyzed.