959 resultados para Demand-Responsive Transportation Systems.
Resumo:
Purpose - The roles of ‘conventional’ (fixed-route and fixed-timetable) bus services is examined and compared to demand-responsive services, taking rural areas in England as the basis for comparison. It adopts a ‘rural’ definition of settlements under a population of 10,000. Design/methodology/approach - Evidence from the National Travel Survey, technical press reports and academic work is brought together to examine the overall picture. Findings - Inter-urban services between towns can provide a cost-effective way of serving rural areas where smaller settlements are suitably located. The cost structures of both fixed-route and demand-responsive services indicate that staff time and cost associated with vehicle provision are the main elements. Demand-responsive services may enable larger areas to be covered, to meet planning objectives of ensuring a minimum of level of service, but experience often shows high unit cost and public expenditure per passenger trip. Economic evaluation indicates user benefits per passenger trip of similar magnitude to existing average public expenditure per trip on fixed-route services. Considerable scope exists for improvements to conventional services through better marketing and service reliability. Practical implications - The main issue in England is the level of funding for rural services in general, and the importance attached to serving those without access to cars in such areas. Social implications - The boundary between fixed-route and demand-responsive operation may lie at relatively low population densities. Originality/value - The chapter uses statistical data, academic research and operator experience of enhanced conventional bus services to provide a synthesis of outcomes in rural areas.
Resumo:
The lack of flexibility in logistic systems currently on the market leads to the development of new innovative transportation systems. In order to find the optimal configuration of such a system depending on the current goal functions, for example minimization of transport times and maximization of the throughput, various mathematical methods of multi-criteria optimization are applicable. In this work, the concept of a complex transportation system is presented. Furthermore, the question of finding the optimal configuration of such a system through mathematical methods of optimization is considered.
Resumo:
Transportation and land-use are independent, inter-active systems. Land-use patterns shape local transportation demand, but transportation systems in turn influence land-use patterns. In attempting to satisfy transportation demand created by existing land-use patterns, transportation planners directly, if not always consciously or intentionally, influence future land-use patterns. This study examines that complex relationship. The purpose of the study was threefold: to compile the body of knowledge already existing; to apply this body of knowledge to the context of midsize cities in the Midwest; and, to make the knowledge accessible both to transportation planners and to public officials who make key decisions about land use.
Resumo:
Transportation research makes a difference for Iowans and the nation. Implementation of cost effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2010, Iowa led fifteen active pooled fund studies, participated in twenty-two others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 20 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
"Report no. UMTA-TN-06-0004-75-2"--Technical report documentation p.
Resumo:
This paper studies the effect of rain on travel demand measured on the Tokyo Metropolitan Expressway (MEX). Rainfall data monitored by the Japan Meteorological Agency's meso-scale network of weather stations are used. This study found that travel demand decreases during rainy days and, in particular, larger reductions occur over the weekend. The effect of rainfall on the number of accidents recorded on 10 routes on the MEX is also analysed. Statistical testing shows that the average frequency of accidents, during periods of rainfall, is significantly different from the average frequency at other times.
Resumo:
Predictability - the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements - is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems - possessing properties such as clairvoyance, caprice, in finite capacity, or perfect timing - cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems - not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the CLEOPATRA programming language. CLEOPATRA features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. CLEOPATRA is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of CLEOPATRA has been in use as a specification and simulation language for embedded time-critical robotic processes.
Resumo:
With the increasing utilization of electric vehicles (EVs), transportation systems and electrical power systems are becoming increasingly coupled. However, the interaction between these two kinds of systems are not well captured, especially from the perspective of transportation systems. This paper studies the reliability of integrated transportation and electrical power system (ITES). A bidirectional EV charging control strategy is first demonstrated to model the interaction between the two systems. Thereafter, a simplified transportation system model is developed, whose high efficiency makes the reliability assessment of the ITES realizable with an acceptable accuracy. Novel transportation system reliability indices are then defined from the view point of EV’s driver. Based on the charging control model and the transportation simulation method, a daily periodic quasi sequential reliability assessment method is proposed for the ITES system. Case studies based on RBTS system demonstrate that bidirectional charging controls of EVs will benefit the reliability of power systems, while decrease the reliability of EVs travelling. Also, the optimal control strategy can be obtained based on the proposed method. Finally, case studies are performed based on a large scale test system to verify the practicability of the proposed method.
Resumo:
Energy efficiency has become an important research topic in intralogistics. Especially in this field the focus is placed on automated storage and retrieval systems (AS/RS) utilizing stacker cranes as these systems are widespread and consume a significant portion of the total energy demand of intralogistical systems. Numerical simulation models were developed to calculate the energy demand rather precisely for discrete single and dual command cycles. Unfortunately these simulation models are not suitable to perform fast calculations to determine a mean energy demand value of a complete storage aisle. For this purpose analytical approaches would be more convenient but until now analytical approaches only deliver results for certain configurations. In particular, for commonly used stacker cranes equipped with an intermediate circuit connection within their drive configuration there is no analytical approach available to calculate the mean energy demand. This article should address this research gap and present a calculation approach which enables planners to quickly calculate the energy demand of these systems.
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Federal Transit Administration, Washington, D.C.
Resumo:
Urban Mass Transportation Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.