970 resultados para Demand information


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article the demand for fish and its substitute was estimated using a very flexible demand function, the Almost Ideal Demand System (AIDS) developed by Deaton and Muelllbaeur (1980), incorporating the habit formation variable to measure the impact of the changes in tastes in comsumer demand for fish and meat products from 1960 to 1990 in Malaysia. Information on price and income elasticities for these meat groups was also obtained. To incorporate consumption habit variables, the dynamic translating procedure proposed by Pollak (1970) and Pollak and Wales (1981) has been adopted. The overall results of the maximum likelihood estimates of the dynamic AIDS model are quite good where 19 of 30 coefficients are significantly different from zero and the minimum budget shares, the constant, are between zero and one for each meat type. Consumers tend to purchase and consume fish, chicken, and pork almost daily. Beef and mutton are only consumed occassionally since they are relatively more expensive. This finding is consistent with the trend observed in the per capita consumption and budget share where fish, chicken, and pork tended to dominate over beef and mutton from 1960 to 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most research on technology roadmapping has focused on its practical applications and the development of methods to enhance its operational process. Thus, despite a demand for well-supported, systematic information, little attention has been paid to how/which information can be utilised in technology roadmapping. Therefore, this paper aims at proposing a methodology to structure technological information in order to facilitate the process. To this end, eight methods are suggested to provide useful information for technology roadmapping: summary, information extraction, clustering, mapping, navigation, linking, indicators and comparison. This research identifies the characteristics of significant data that can potentially be used in roadmapping, and presents an approach to extracting important information from such raw data through various data mining techniques including text mining, multi-dimensional scaling and K-means clustering. In addition, this paper explains how this approach can be applied in each step of roadmapping. The proposed approach is applied to develop a roadmap of radio-frequency identification (RFID) technology to illustrate the process practically. © 2013 © 2013 Taylor & Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeoman, A., Durbin, J. & Urquhart, C. (2004). Evaluating SWICE-R (South West Information for Clinical Effectiveness - Rural). Final report for South West Workforce Development Confederations, (Knowledge Resources Development Unit). Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: South West WDCs (NHS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the logs of our departmental HTTP server http://cs-www.bu.edu as well as the logs of the more popular Rolling Stones HTTP server http://www.stones.com. These servers have very different purposes; the former caters primarily to local clients, whereas the latter caters exclusively to remote clients all over the world. In both cases, our analysis showed that remote HTTP accesses were confined to a very small subset of documents. Using a validated analytical model of server popularity and file access profiles, we show that by disseminating the most popular documents on servers (proxies) closer to the clients, network traffic could be reduced considerably, while server loads are balanced. We argue that this process could be generalized so as to provide for an automated demand-based duplication of documents. We believe that such server-based information dissemination protocols will be more effective at reducing both network bandwidth and document retrieval times than client-based caching protocols [2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For at least two millennia and probably much longer, the traditional vehicle for communicating geographical information to end-users has been the map. With the advent of computers, the means of both producing and consuming maps have radically been transformed, while the inherent nature of the information product has also expanded and diversified rapidly. This has given rise in recent years to the new concept of geovisualisation (GVIS), which draws on the skills of the traditional cartographer, but extends them into three spatial dimensions and may also add temporality, photorealistic representations and/or interactivity. Demand for GVIS technologies and their applications has increased significantly in recent years, driven by the need to study complex geographical events and in particular their associated consequences and to communicate the results of these studies to a diversity of audiences and stakeholder groups. GVIS has data integration, multi-dimensional spatial display advanced modelling techniques, dynamic design and development environments and field-specific application needs. To meet with these needs, GVIS tools should be both powerful and inherently usable, in order to facilitate their role in helping interpret and communicate geographic problems. However no framework currently exists for ensuring this usability. The research presented here seeks to fill this gap, by addressing the challenges of incorporating user requirements in GVIS tool design. It starts from the premise that usability in GVIS should be incorporated and implemented throughout the whole design and development process. To facilitate this, Subject Technology Matching (STM) is proposed as a new approach to assessing and interpreting user requirements. Based on STM, a new design framework called Usability Enhanced Coordination Design (UECD) is ten presented with the purpose of leveraging overall usability of the design outputs. UECD places GVIS experts in a new key role in the design process, to form a more coordinated and integrated workflow and a more focused and interactive usability testing. To prove the concept, these theoretical elements of the framework have been implemented in two test projects: one is the creation of a coastal inundation simulation for Whitegate, Cork, Ireland; the other is a flooding mapping tool for Zhushan Town, Jiangsu, China. The two case studies successfully demonstrated the potential merits of the UECD approach when GVIS techniques are applied to geographic problem solving and decision making. The thesis delivers a comprehensive understanding of the development and challenges of GVIS technology, its usability concerns, usability and associated UCD; it explores the possibility of putting UCD framework in GVIS design; it constructs a new theoretical design framework called UECD which aims to make the whole design process usability driven; it develops the key concept of STM into a template set to improve the performance of a GVIS design. These key conceptual and procedural foundations can be built on future research, aimed at further refining and developing UECD as a useful design methodology for GVIS scholars and practitioners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a general technique for determining upper bounds on maximal values (or lower bounds on minimal costs) in stochastic dynamic programs. In this approach, we relax the nonanticipativity constraints that require decisions to depend only on the information available at the time a decision is made and impose a "penalty" that punishes violations of nonanticipativity. In applications, the hope is that this relaxed version of the problem will be simpler to solve than the original dynamic program. The upper bounds provided by this dual approach complement lower bounds on values that may be found by simulating with heuristic policies. We describe the theory underlying this dual approach and establish weak duality, strong duality, and complementary slackness results that are analogous to the duality results of linear programming. We also study properties of good penalties. Finally, we demonstrate the use of this dual approach in an adaptive inventory control problem with an unknown and changing demand distribution and in valuing options with stochastic volatilities and interest rates. These are complex problems of significant practical interest that are quite difficult to solve to optimality. In these examples, our dual approach requires relatively little additional computation and leads to tight bounds on the optimal values. © 2010 INFORMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, a-optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real-world example is presented to highlight the effectiveness of the developed model and algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many plain text information hiding techniques demand deep semantic processing, and so suffer in reliability. In contrast, syntactic processing is a more mature and reliable technology. Assuming a perfect parser, this paper evaluates a set of automated and reversible syntactic transforms that can hide information in plain text without changing the meaning or style of a document. A large representative collection of newspaper text is fed through a prototype system. In contrast to previous work, the output is subjected to human testing to verify that the text has not been significantly compromised by the information hiding procedure, yielding a success rate of 96% and bandwidth of 0.3 bits per sentence. © 2007 SPIE-IS&T.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three issues usually are associated with threat prevention intelligent surveillance systems. First, the fusion and interpretation of large scale incomplete heterogeneous information; second, the demand of effectively predicting suspects’ intention and ranking the potential threats posed by each suspect; third, strategies of allocating limited security resources (e.g., the dispatch of security team) to prevent a suspect’s further actions towards critical assets. However, in the literature, these three issues are seldomly considered together in a sensor network based intelligent surveillance framework. To address
this problem, in this paper, we propose a multi-level decision support framework for in-time reaction in intelligent surveillance. More specifically, based on a multi-criteria event modeling framework, we design a method to predict the most plausible intention of a suspect. Following this, a decision support model is proposed to rank each suspect based on their threat severity and to determine resource allocation strategies. Finally, formal properties are discussed to justify our framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid evolution and proliferation of a world-wide computerized network, the Internet, resulted in an overwhelming and constantly growing amount of publicly available data and information, a fact that was also verified in biomedicine. However, the lack of structure of textual data inhibits its direct processing by computational solutions. Information extraction is the task of text mining that intends to automatically collect information from unstructured text data sources. The goal of the work described in this thesis was to build innovative solutions for biomedical information extraction from scientific literature, through the development of simple software artifacts for developers and biocurators, delivering more accurate, usable and faster results. We started by tackling named entity recognition - a crucial initial task - with the development of Gimli, a machine-learning-based solution that follows an incremental approach to optimize extracted linguistic characteristics for each concept type. Afterwards, Totum was built to harmonize concept names provided by heterogeneous systems, delivering a robust solution with improved performance results. Such approach takes advantage of heterogenous corpora to deliver cross-corpus harmonization that is not constrained to specific characteristics. Since previous solutions do not provide links to knowledge bases, Neji was built to streamline the development of complex and custom solutions for biomedical concept name recognition and normalization. This was achieved through a modular and flexible framework focused on speed and performance, integrating a large amount of processing modules optimized for the biomedical domain. To offer on-demand heterogenous biomedical concept identification, we developed BeCAS, a web application, service and widget. We also tackled relation mining by developing TrigNER, a machine-learning-based solution for biomedical event trigger recognition, which applies an automatic algorithm to obtain the best linguistic features and model parameters for each event type. Finally, in order to assist biocurators, Egas was developed to support rapid, interactive and real-time collaborative curation of biomedical documents, through manual and automatic in-line annotation of concepts and relations. Overall, the research work presented in this thesis contributed to a more accurate update of current biomedical knowledge bases, towards improved hypothesis generation and knowledge discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, the combination of tourism and Information and Communication Technologies (ICT), has originated considerable changes in tourists’ behaviour. The analysis of tourism demand resulting from the Internet is of growing importance, given the increasing number of online reservations observed in recent years. However, in order to analyse the new trends caused by online bookings, the availability of data enabling the measurement and characterization of this phenomenon is essential. This has, however, been a considerable limitation, given that either no data on key variables is available or the available data is sometimes of questionable quality. For professionals and researchers in the area of tourism, the high volume of tourists who use the Internet to make hotel and travel reservations is worth of consideration, given that it may potentiate the discovery of new source markets, the identification of clients with different characteristics and may help explain the dynamics between suppliers or countries. The existence of predictive studies to support decision-making and planning, by professionals of the tourism sector, is of great importance. Panel data models are a useful and appropriate method for the analysis and modelling of tourism demand. These models consider both the time series and the cross-sectional dimensions of the data and allow for the inclusion of social variables. The results of estimation of tourism demand, through panel data models, show that the Internet and the sharp technological development have encouraged the increasing demand for tourism. The growing number of tourism companies online will naturally promote or potentiate an increase of tourism demand.