967 resultados para Deletion mutants
Resumo:
Fungal pathogens perceive and respond to molecules from the plant, triggering pathogenic development. Transduction of these signals may use heterotrimeric G proteins, and it is thought that protein phosphorylation cascades are also important. We have isolated a mitogen-activated protein kinase homolog from the corn pathogen Cochliobolus heterostrophus to test its role as a component of the transduction pathways. The new gene, CHK1, has a deduced amino acid sequence 90% identical to Pmk1 of the rice blast fungus Magnaporthe grisea and 59% identical to Fus3 of Saccharomyces cerevisiae. A series of chk1 deletion mutants has poorly developed aerial hyphae, autolysis, and no conidia. No pseudothecia are formed when a cross between two Δchk1 mutants is attempted. The ability of Δchk1 mutants to infect corn plants is reduced severely. The growth pattern of hyphae on a glass surface is strikingly altered from that of the wild type, forming coils or loops, but no appressoria. This set of phenotypes overlaps only partially with that of pmk1 mutants, the homologous gene of the rice blast fungus. In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal. Chk1 is required for efficient colonization of leaf tissue, which can be compared with filamentous invasive growth of yeast, modulated through another closely related mitogen-activated protein kinase, Kss1. Ubiquitous signaling elements thus are used in diverse ways in different plant pathogens, perhaps the result of coevolution of the transducers and their targets.
Resumo:
The yeast genome encodes four proteins (Pms1 and Mlh1–3) homologous to the bacterial mismatch repair component, MutL. Using two hybrid-interaction and coimmunoprecipitation studies, we show that these proteins can form only three types of complexes in vivo. Mlh1 is the common component of all three complexes, interacting with Pms1, Mlh2, and Mlh3, presumptively as heterodimers. The phenotypes of single deletion mutants reveal distinct functions for the three heterodimers during meiosis: in a pms1 mutant, frequent postmeiotic segregation indicates a defect in the correction of heteroduplex DNA, whereas the frequency of crossing-over is normal. Conversely, crossing-over in the mlh3 mutant is reduced to ≈70% of wild-type levels but correction of heteroduplex is normal. In a mlh2 mutant, crossing-over is normal and postmeiotic segregation is not observed but non-Mendelian segregation is elevated and altered with respect to parity. Finally, to a first approximation, the mlh1 mutant represents the combined single mutant phenotypes. Taken together, these data imply modulation of a basic Mlh1 function via combination with the three other MutL homologs and suggest specifically that Mlh1 combines with Mlh3 to promote meiotic crossing-over.
Resumo:
BRCA2 mutations predispose carriers mainly to breast cancer. The vast majority of BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are crucial for BRCA2 function. A series of green fluorescent protein (GFP)-tagged BRCA2 deletion mutants revealed that nuclear localization depends on two nuclear localization signals that reside within the final 156 residues of BRCA2. Consistent with this observation, an endogenous truncated BRCA2 mutant (6174delT) was found to be cytoplasmic. Together, these studies provide a simple explanation for why the vast majority of BRCA2 mutants are nonfunctional: they do not translocate into the nucleus.
Resumo:
FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.
Resumo:
We reported previously that a conformation-specific antibody, Ab P2, to a 16-amino acid peptide (Glu-Gly-Tyr-Lys-Lys-Lys-Tyr-Gln-Gln-Val-Asp-Glu-Glu-Phe-Leu-Arg) of the cytoplasmic domain of the β-type platelet-derived growth factor receptor also recognizes the epidermal growth factor (EGF) receptor. Although the antibody is not directed to phosphotyrosine, it recognizes in immunoprecipitation the activated and hence phosphorylated form of both receptors. In P2 peptide, there are two tripeptide sequences, Asp-Glu-Glu and Tyr-Gln-Gln, that are also present in the EGF receptor. Our present studies using either EGF receptor C-terminal deletion mutants or point mutations (Tyr→Phe) and our previous studies on antibody inhibition by P2-derived peptides suggest that Gln-Gln in combination with Asp-Glu-Glu forms a high-affinity complex with Ab P2 and that such complex formation is dependent on tyrosine phosphorylation. Of the five phosphate acceptor sites in the EGF receptor, clustered in the extreme C-terminal tail, phosphorylation of three tyrosine residues (992, 1068, and 1086) located between Asp-Glu-Glu and Gln-Gln is necessary for Ab P2 binding. In contrast, the acceptor sites Tyr 1173 and 1148 play no role in the conformation change. Asp-Glu-Glu and Gln-Gln are located 169 amino acids apart, and it is highly likely that the interactions among three negatively charged phosphotyrosine residues in the receptor C terminus may result in the bending of the peptide chain in such a way that these two peptides come close to each other to form an antibody-binding site. Such a possibility is also supported by our finding that receptor dephosphorylation results in complete loss of Ab P2–binding activity. In conclusion, we have identified a domain within the cytoplasmic part of the EGF receptor whose conformation is altered by receptor phosphorylation; furthermore, we have identified the tyrosine residues that positively regulate this conformation.
Resumo:
It has been proposed that synthesis of β-1,6-glucan, one of Saccharomyces cerevisiae cell wall components, is initiated by a uridine diphosphate (UDP)-glucose–dependent reaction in the lumen of the endoplasmic reticulum (ER). Because this sugar nucleotide is not synthesized in the lumen of the ER, we have examined whether or not UDP–glucose can be transported across the ER membrane. We have detected transport of this sugar nucleotide into the ER in vivo and into ER–containing microsomes in vitro. Experiments with ER-containing microsomes showed that transport of UDP–glucose was temperature dependent and saturable with an apparent Km of 46 μM and a Vmax of 200 pmol/mg protein/3 min. Transport was substrate specific because UDP–N-acetylglucosamine did not enter these vesicles. Demonstration of UDP–glucose transport into the ER lumen in vivo was accomplished by functional expression of Schizosaccharomyces pombe UDP–glucose:glycoprotein glucosyltransferase (GT) in S. cerevisiae, which is devoid of this activity. Monoglucosylated protein-linked oligosaccharides were detected in alg6 or alg5 mutant cells, which transfer Man9GlcNAc2 to protein; glucosylation was dependent on the inhibition of glucosidase II or the disruption of the gene encoding this enzyme. Although S. cerevisiae lacks GT, it contains Kre5p, a protein with significant homology and the same size and subcellular location as GT. Deletion mutants, kre5Δ, lack cell wall β-1,6 glucan and grow very slowly. Expression of S. pombe GT in kre5Δ mutants did not complement the slow-growth phenotype, indicating that both proteins have different functions in spite of their similarities.
Resumo:
C2-α-Mannosyltryptophan was discovered in human RNase 2, an enzyme that occurs in eosinophils and is involved in host defense. It represents a novel way of attaching carbohydrate to a protein in addition to the well-known N- and O-glycosylations. The reaction is specific, as in RNase 2 Trp-7, but never Trp-10, which is modified. In this article, we address which structural features provide the specificity of the reaction. Expression of chimeras of RNase 2 and nonglycosylated RNase 4 and deletion mutants in HEK293 cells identified residues 1–13 to be sufficient for C-mannosylation. Site-directed mutagenesis revealed the sequence Trp-x-x-Trp, in which the first Trp becomes mannosylated, as the specificity determinant. The Trp residue at position +3 can be replaced by Phe, which reduces the efficiency of the reaction threefold. Interpretation of the data in the context of the three-dimensional structure of RNase 2 strongly suggests that the primary, rather than the tertiary, structure forms the determinant. The sequence motif occurs in 336 mammalian proteins currently present in protein databases. Two of these proteins were analyzed protein chemically, which showed partial C-glycosylation of recombinant human interleukin 12. The frequent occurrence of the protein recognition motif suggests that C-glycosides could be part of the structure of more proteins than assumed so far.
Resumo:
The polymeric Ig receptor (pIgR) transcytoses its ligand, dimeric IgA (dIgA), from the basolateral to the apical surface of epithelial cells. Although the pIgR is constitutively transcytosed in the absence of ligand, binding of dIgA stimulates transcytosis of the pIgR. We recently reported that dIgA binding to the pIgR induces translocation of protein kinase C, production of inositol triphosphate, and elevation of intracellular free calcium. We now report that dIgA binding causes rapid, transient tyrosine phosphorylation of several proteins, including phosphatidyl inositol-specific phospholipase C-γl. Protein tyrosine kinase inhibitors or deletion of the last 30 amino acids of pIgR cytoplasmic tail prevents IgA-stimulated protein tyrosine kinase activation, tyrosine phosphorylation of phospholipase C-γl, production of inositol triphosphate, and the stimulation of transcytosis by dIgA. Analysis of pIgR deletion mutants reveals that the same discrete portion of the cytoplasmic domain, residues 727–736 (but not the Tyr734), controls both the ability of pIgR to cause dIgA-induced tyrosine phosphorylation of the phospholipase C-γl and to undergo dIgA-stimulated transcytosis. In addition, dIgA transcytosis can be strongly stimulated by mimicking phospholipase C-γl activation. In combination with our previous results, we conclude that the protein tyrosine kinase(s) and phospholipase C-γl that are activated upon dIgA binding to the pIgR control dIgA-stimulated pIgR transcytosis.
Resumo:
During infection of a new host, the first surfaces encountered by herpes simplex viruses are the apical membranes of epithelial cells of mucosal surfaces. These cells are highly polarized, and the protein composition of their apical and basolateral membranes are very different, so that different viral entry pathways have evolved for each surface. To determine whether the viral glycoprotein G (gG) is specifically required for efficient infection of a particular surface of polarized cells, apical and basal surfaces were infected with wild-type virus or a gG deletion mutant. After infection of polarized cells in culture, the gG− virus was deficient in infection of apical surfaces but was able to infect cells through basal membranes, replicate, and spread into surrounding cells. The gG-dependent step in apical infection was a stage beyond attachment. After in vivo infection of apical surfaces of epithelial cells of nonscarified mouse corneas, infection by glycoprotein C− or gG− virus was considerably reduced as compared with that observed after infection with wild-type virus. In contrast, when corneas were scarified, allowing virus access to other cell surfaces, the gG and glycoprotein C deletion mutants infected eyes as efficiently as wild-type viruses. A secondary mutation allowing infection of apical surfaces by gG− virus arose readily during passage of the virus in nonpolarized cells, indicating that either the gG-dependent step of apical infection can be bypassed or that another viral protein can acquire the same function.
Resumo:
Flavin-containing monooxygenase from yeast (yFMO) carries out the O2- and NADPH-dependent oxidation of biological thiols, including oxidizing glutathione to glutathione disulfide. FMO provides a large fraction of the oxidizing necessary for proper folding of disulfide bond-containing proteins; deletion of the enzyme reduces proper folding of endogenous carboxypeptidase Y by about 40%. The enzyme is not essential to cell viability because other enzymes can generate a significant fraction of the oxidizing equivalents required by the cell. However, yFMO is vital to the yeast response to reductive stress. FMO1 deletion mutants grow poorly under reductive stress, and carboxypeptidase Y activity is less than 10% of that in a stressed wild type. The FMO1 gene appears to be under control of an unfolded protein response element and is inducible by factors, such as reductive stress, that elicit the unfolded protein response. Reductive stress can increase yFMO activity at least 6-fold. This increased activity allows the cell to process endogenous disulfide bond-containing proteins and also to allow correct folding of disulfide-bonded proteins expressed from multicopy plasmids. The unfolded protein response is mediated by the Hac1p transcription factor that mediates virtually all of the induction of yFMO triggered by exogenous reducing agents.
Resumo:
Large sections of the 3′ untranslated region (UTR) of hepatitis C virus (HCV) were deleted from an infectious cDNA clone, and the RNA transcripts from seven deletion mutants were tested sequentially for infectivity in a chimpanzee. Mutants lacking all or part of the 3′ terminal conserved region or the poly(U–UC) region were unable to infect the chimpanzee, indicating that both regions are critical for infectivity in vivo. However, the third region, the variable region, was able to tolerate a deletion that destroyed the two putative stem–loop structures within this region. Mutant VR-24 containing a deletion of the proximal 24 nt of the variable region of the 3′ UTR was viable in the chimpanzee and seemed to replicate as well as the undeleted parent virus. The chimpanzee became viremic 1 week after inoculation with mutant VR-24, and the HCV genome titer increased over time during the early acute infection. Therefore, the poly(U–UC) region and the conserved region, but not the variable region, of the 3′ UTR seem to be critical for in vivo infectivity of HCV.
Resumo:
Serine/threonine kinase Akt/PKB is a downstream effector molecule of phosphoinositide 3-kinase and is thought to mediate many biological actions toward anti-apoptotic responses. We found that Akt formed a complex with a 90-kDa heat-shock protein (Hsp90) in vivo. By constructing deletion mutants, we identified that amino acid residues 229–309 of Akt were involved in the binding to Hsp90 and amino acid residues 327–340 of Hsp90β were involved in the binding to Akt. Inhibition of Akt-Hsp90 binding led to the dephosphorylation and inactivation of Akt, which increased sensitivity of the cells to apoptosis-inducing stimulus. The dephosphorylation of Akt was caused by an increase in protein phosphatase 2A (PP2A)-mediated dephosphorylation and not by a decrease in 3-phosphoinositide-dependent protein kinase-1-mediated phosphorylation. These results indicate that Hsp90 plays an important role in maintaining Akt kinase activity by preventing PP2A-mediated dephosphorylation.
Resumo:
To pursue an earlier observation that the protein encoded by the UL34 gene binds to intermediate chain of dynein, we constructed a series of mutants from which sequences encoding the entire protein (ΔUL34) or amino-terminal [UL34Δ(3–119)] or carboxyl-terminal [UL34Δ(245–275)] domains were deleted. The mutant lacking the sequence encoding the carboxyl-terminal domain grew in all cell lines tested. The two other mutants replicated only in cell type-dependent manner and poorly. Rescue of ΔUL34 mutant with a fragment that does not encompass the UL31 ORF restored wild-type phenotype. UL34 protein interacts physically with UL31, and the UL31 deletion mutant appears to have a phenotype similar to that of UL34 deletion mutant. Experiments designed to determine whether the phenotypes of the deletion mutants have a common base revealed that cells infected with the ΔUL34 mutant accumulate UL31 RNA but not the corresponding protein. The UL31 protein accumulated, however, to near wild-type virus-infected cell levels in cells infected with ΔUL34 mutant and treated with the MG132 proteosomal inhibitor at 6 h after infection. This is evidence that the stability of an essential viral protein requires the presence of another protein. The observation raises the bar for identification of gene function on the basis of analyses of the phenotype of mutants in which the gene has been deleted or rendered inoperative.
Resumo:
The target of rapamycin protein (TOR) is a highly conserved ataxia telangiectasia-related protein kinase essential for cell growth. Emerging evidence indicates that TOR signaling is highly complex and is involved in a variety of cellular processes. To understand its general functions, we took a chemical genomics approach to explore the genetic interaction between TOR and other yeast genes on a genomic scale. In this study, the rapamycin sensitivity of individual deletion mutants generated by the Saccharomyces Genome Deletion Project was systematically measured. Our results provide a global view of the rapamycin-sensitive functions of TOR. In contrast to conventional genetic analysis, this approach offers a simple and thorough analysis of genetic interaction on a genomic scale and measures genetic interaction at different possible levels. It can be used to study the functions of other drug targets and to identify novel protein components of a conserved core biological process such as DNA damage checkpoint/repair that is interfered with by a cell-permeable chemical compound.
Resumo:
The multispanning membrane protein Ste6, a member of the ABC-transporter family, is transported to the yeast vacuole for degradation. To identify functions involved in the intracellular trafficking of polytopic membrane proteins, we looked for functions that block Ste6 transport to the vacuole upon overproduction. In our screen, we identified several known vacuolar protein sorting (VPS) genes (SNF7/VPS32, VPS4, and VPS35) and a previously uncharacterized open reading frame, which we named MOS10 (more of Ste6). Sequence analysis showed that Mos10 is a member of a small family of coiled-coil–forming proteins, which includes Snf7 and Vps20. Deletion mutants of all three genes stabilize Ste6 and show a “class E vps phenotype.” Maturation of the vacuolar hydrolase carboxypeptidase Y was affected in the mutants and the endocytic tracer FM4-64 and Ste6 accumulated in a dot or ring-like structure next to the vacuole. Differential centrifugation experiments demonstrated that about half of the hydrophilic proteins Mos10 and Vps20 was membrane associated. The intracellular distribution was further analyzed for Mos10. On sucrose gradients, membrane-associated Mos10 cofractionated with the endosomal t-SNARE Pep12, pointing to an endosomal localization of Mos10. The growth phenotypes of the mutants suggest that the “Snf7-family” members are involved in a cargo-specific event.