762 resultados para Degenerating Hyperbolic Manifolds
Resumo:
This Licentiate thesis deals with hyperbolic type geometries in planar subdomains. It is known that hyperbolic type distance is always greater in a subdomain than in the original domain. In this work we obtain certain lower estimates for hyperbolic type distances in subdomains in terms of hyperbolic type distances of the original domains. In particular the domains that we consider are cyclic polygons and their circumcircles, sectors and supercircles.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises, exam questions and solutions for a fourth year hyperbolic geometry course. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independient of random motion, and intensities of reverses are defined by a particle's current direction. A soluton of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) have a so-called McKean representation via such processes. Commonly this system possesses traveling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed.This Paper realizes the McKean programme for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.
Resumo:
The =CH2 AND =CD2 stretching vibrational overtones of H2C=CD2 have been studied up to V= 6 and V= 3, respectively. We report their interpretation in terms of a transition from normal to local modes, involving Fermi resonance with the C=C stretching and CH2 scissoring vibrations. We discuss the alternative representation of the vibrational Hamiltonian matrix in local mode and normal mode basis functions, and conclude that the normal mode basis offers greater flexibility in representing small anharmonic couplings with other modes.
Resumo:
In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.
Resumo:
We study the inuence of the intrinsic curvature on the large time behaviour of the heat equation in a tubular neighbourhood of an unbounded geodesic in a two-dimensional Riemannian manifold. Since we consider killing boundary conditions, there is always an exponential-type decay for the heat semigroup. We show that this exponential-type decay is slower for positively curved manifolds comparing to the at case. As the main result, we establish a sharp extra polynomial-type decay for the heat semigroup on negatively curved manifolds comparing to the at case. The proof employs the existence of Hardy-type inequalities for the Dirichlet Laplacian in the tubular neighbourhoods on negatively curved manifolds and the method of self-similar variables and weighted Sobolev spaces for the heat equation.