959 resultados para Databases on Properties of Inorganic Substances and Materials
Resumo:
We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20–100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.
Resumo:
Errata sheet inserted.
Resumo:
A wire drive pulse echo method of measuring the spectrum of solid bodies described. Using an 's' plane representation, a general analysis of the transient response of such solids has been carried out. This was used for the study of the stepped amplitude transient of high order modes of disks and for the case where there are two adjacent resonant frequencies. The techniques developed have been applied to the measurenent of the elasticities of refractory materials at high temperatures. In the experimental study of the high order in-plane resonances of thin disks it was found that the energy travelled at the edge of the disk and this initiated the work on one dimensional Rayleigh waves.Their properties were established for the straight edge condition by following an analysis similar to that of the two dimensional case. Experiments were then carried out on the velocity dispersion of various circuits including the disk and a hole in a large plate - the negative curvature condition.Theoretical analysis established the phase and group velocities for these cases and experimental tests on aluminium and glass gave good agreement with theory. At high frequencies all velocities approach that of the one dimensional Rayleigh waves. When applied to crack detection it was observed that a signal burst travelling round a disk showed an anomalous amplitude effect. In certain cases the signal which travelled the greater distance had the greater amplitude.An experiment was designed to investigate the phenanenon and it was established that the energy travelled in two nodes with different velocities.It was found by analysis that as well as the Rayleigh surface wave on the edge, a seoond node travelling at about the shear velocity was excited and the calculated results gave reasonable agreement with the experiments.
Resumo:
A study was made of the effect of blending practice upon selected physical properties of crude oils, and of various base oils and petroleum products, using a range of binary mixtures. The crudes comprised light, medium and heavy Kuwait crude oils. The properties included kinematic viscosity, pour point, boiling point and Reid vapour pressure. The literature related to the prediction of these properties, and the changes reported to occur on blending, was critically reviewed as a preliminary to the study. The kinematic viscosity of petroleum oils in general exhibited non-ideal behaviour upon blending. A mechanism was proposed for this behaviour which took into account the effect of asphaltenes content. A correlation was developed, as a modification of Grunberg's equation, to predict the viscosities of binary mixtures of petroleum oils. A correlation was also developed to predict the viscosities of ternary mixtures. This correlation showed better agreement with experimental data (< 6% deviation for crude oils and 2.0% for base oils) than currently-used methods, i.e. ASTM and Refutas methods. An investigation was made of the effect of temperature on the viscosities of crude oils and petroleum products at atmospheric pressure. The effect of pressure on the viscosity of crude oil was also studied. A correlation was developed to predict the viscosity at high pressures (up to 8000 psi), which gave significantly better agreement with the experimental data than the current method due to Kouzel (5.2% and 6.0% deviation for the binary and ternary mixtures respectively). Eyring's theory of viscous flow was critically investigated, and a modification was proposed which extends its application to petroleum oils. The effect of blending on the pour points of selected petroleum oils was studied together with the effect of wax formation and asphaltenes content. Depression of the pour point was always obtained with crude oil binary mixtures. A mechanism was proposed to explain the pour point behaviour of the different binary mixtures. The effects of blending on the boiling point ranges and Reid vapour pressures of binary mixtures of petroleum oils were investigated. The boiling point range exhibited ideal behaviour but the R.V.P. showed negative deviations from it in all cases. Molecular weights of these mixtures were ideal, but the densities and molar volumes were not. The stability of the various crude oil binary mixtures, in terms of viscosity, was studied over a temperature range of 1oC - 30oC for up to 12 weeks. Good stability was found in most cases.
Resumo:
Paper-based phenolic laminates are used extensively in the electrical industry. Many small components are fabricated from these materials by the process known as punching. Recently an investigation was carried out to study the effect of processing variables on the punching properties. It was concluded that further work would be justified and that this should include a critical examination of the resin properties in a more controlled and systematic manner. In this investigation an attempt has been made to assess certain features of the resin structure in terms of thermomechanical properties. The number of crosslinks in the system was controlled using resins based on phenol and para-cresol formulations. Intramolecular hydrogen bonding effects were examined using substituted resins and a synthetically derived phenol based on 1,3-di-(o-hydroxyphenyl) propane.. A resin system was developed using the Friedel Crafts reaction to examine inter-molecular hydrogen bonding at the resin-paper interface. The punching properties of certain selected resins were assessed on a qualitative basis. In addition flexural and dynamic mechanical properties were determined in a general study of the structure-property relationships of these materials. It has been shown that certain features of the resin structure significantly influenced mechanical properties. :F'urther, it was noted that there is a close relationship between punching properties, mechanical damping and flexural strain. This work includes a critical examination of the curing mechanism and views are postulated in an attempt to extend knowledge in this area of the work. Finally, it is argued that future work should be based on a synthetic approach and that dynamic mechanical testing would provide a powerful tool In developing a deeper understanding of the resin fine structure.
Resumo:
Иво Й. Дамянов - Манипулирането на булеви функции е основнo за теоретичната информатика, в това число логическата оптимизация, валидирането и синтеза на схеми. В тази статия се разглеждат някои първоначални резултати относно връзката между граф-базираното представяне на булевите функции и свойствата на техните променливи.
Resumo:
Peer reviewed
Resumo:
When a liquid is irradiated with ultrasound, acoustic cavitation (the formation, growth, and implosive collapse of bubbles in liquids irradiated with ultrasound) generally occurs. This is the phenomenon responsible for the driving of chemical reactions (sonochemistry) and the emission of light (sonoluminescence). The implosive collapse of bubbles in liquids results in an enormous concentration of sound energy into compressional heating of the bubble contents. Therefore, extreme chemical and physical conditions are generated during cavitation. The study of multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) in exotic liquids such as sulfuric acid (H2SO4) and phosphoric acid (H3PO4) leads to useful information regarding the intracavity conditions during bubble collapse. Distinct sonoluminescing bubble populations were observed from the intense orange and blue-white emissions by doping H2SO4 and H3PO4 with sodium salts, which provides the first experimental evidence for the injected droplet model over the heated-shell model for cavitation. Effective emission temperatures measured based on excited OH• and PO• emission indicate that there is a temperature inhomogeneity during MBSL in 85% H3PO4. The formation of a temperature inhomogeneity is due to the existence of different cavitating bubble populations: asymmetric collapsing bubbles contain liquid droplets and spherical collapsing bubbles do not contain liquid droplets. Strong molecular emission from SBSL in 65% H3PO4 have been obtained and used as a spectroscopic probe to determine the cavitation temperatures. It is found that the intracavity temperatures are dependent on the applied acoustic pressures and the thermal conductivities of the dissolved noble gases. The chemical and physical effects of ultrasound can be used for materials synthesis. Highly reactive species, including HO2•, H•, and OH• (or R• after additives react with OH•), are formed during aqueous sonolysis as a consequence of the chemical effects of ultrasound. Reductive species can be applied to synthesis of water-soluble fluorescent silver nanoclusters in the presence of a suitable stabilizer or capping agent. The optical and fluorescent properties of the Ag nanoclusters can be easily controlled by the synthetic conditions such as the sonication time, the stoichiometry of the carboxylate groups to Ag+, and the polymer molecular weight. The chemical and physical effects of ultrasound can be combined to prepare polymer functionalized graphenes from graphites and a reactive solvent, styrene. The physical effects of ultrasound are used to exfoliate graphites to graphenes while the chemical effects of ultrasound are used to induce the polymerization of styrene which can then functionalize graphene sheets via radical coupling. The prepared polymer functionalized graphenes are highly stable in common organic solvents like THF, CHCl3, and DMF. Ultrasonic spray pyrolysis (USP) is used to prepare porous carbon spheres using energetic alkali propiolates as the carbon precursors. In this synthesis, metal salts are generated in situ, introducing porous structures into the carbon spheres. When different alkali salts or their mixtures are used as the precursor, carbon spheres with different morphologies and structures are obtained. The different precursor decomposition pathways are responsible for the observed structural difference. Such prepared carbon materials have high surface area and are thermally stable, making them potentially useful for catalytic supports, adsorbents, or for other applications by integrating other functional materials into their pores.
Resumo:
The purpose of this study was to evaluate the hydrogenionic potential and electrical conductivity of Portland cements and MTA, as well as the amount of arsenic and calcium released from these materials. In Teflon molds, samples of each material were agitated and added to plastic flasks containing distilled water for 3, 24, 72 and 168 h. The results were analyzed with a Kruskal-Wallis non-parametric test for global comparisons and a Dunn-Tukey test for pairwise comparisons. The results revealed no significant differences in the pH of the materials (p > 0.05). The electrical conductivity of the cements were not statistically different (p > 0.05). White non-structural cement and MTA BIO released the largest amount of calcium ions into solution (p < 0.05), while arsenic release was insignificant in all of the materials (p > 0.05). The results indicated that the physico-chemical properties of Portland cements and MTA were similar. Furthermore, all materials produced an alkaline environment and can be considered safe for clinical use because arsenic was not released. The electrical conductivity and the amount of calcium ions released into solution increased over time.
Resumo:
The aim of this study was to evaluate the quality of filling in main and lateral root canals performed with the McSpadden technique, regarding the time spent on the procedure and the type of gutta-percha employed. Fifty simulated root canals, made with six lateral canals placed two apiece in the cervical, middle and apical thirds of the root, were divided into 5 groups. Group A: McSpadden technique with conventional gutta-percha, performed with sufficient time for canal filling; Group B: McSpadden technique with conventional gutta-percha, performed in twice the mean time used in Group A; Group C: McSpadden technique with TP gutta-percha, performed with sufficient time for canal filling; Group D: McSpadden technique with TP gutta-percha, performed in twice the mean time used in Group C; Group E: lateral condensation technique. Images of the filled root canals were taken using a stereomicroscope and analyzed using the Leica QWIN Pro software for filling material flow, gutta-percha filling extension and sealer flow. Data were analyzed by analysis of variance (ANOVA) and Tukey test (p < 0.05). The best values of penetration in lateral canals in the middle third occurred in the groups where TP gutta-percha was used. However, in the apical third, group B showed the best values. Although a longer time of compactor use allows greater penetration of the filling material into the lateral canals, the presence of voids resulted in bad quality radiographic images, suggesting porosity. The best quality of filling material was observed in Group A (McSpadden technique with conventional Gutta-Percha, performed with sufficient time for root canal filling).
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
Optical constants of AlSb, GaSb, and InSb are modeled in the 1-6 eV spectral range. We employ an extension of Adachi's model of the optical constants of semiconductors. The model takes into account transitions at E-0, E-0 + Delta(0), E-1, and E-1 + Delta(1) critical points, as well as higher-lying transitions which are modeled with three damped harmonic oscillators. We do not consider indirect transitions contribution, since it represents a second-order perturbation and its strength should be low. Also, we do not take into account excitonic effects at E-1, E-1 + Delta(1) critical points, since we model the room temperature data. In spite of fewer contributions to the dielectric function compared to previous calculations involving Adachi's model, our calculations show significantly improved agreement with the experimental data. This is due to the two main distinguishing features of calculations presented here: use of adjustable line broadening instead of the conventional Lorentzian one, and employment of a global optimization routine for model parameter determination.
Resumo:
A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.
Resumo:
In the investigation of thin films of transition metal nitrides, an essential role is played by the accurate determination of their chemical composition. Actually the chemical composition depends on the deposition parameters and influences the optical properties. These relations are illustrated in thin films of TiNx and (Ti1-yVy)N-x deposited by reactive magnetron sputtering from composite targets of the elements. By variation of the nitrogen partial pressure and the target composition, different samples have been obtained. The chemical composition has been measured by electron probe microanalysis at low irradiation voltages. The optical properties are evaluated by ex-situ ellipsometry. Using the screened Drude model, they are correlated with the differences in composition. Adding vanadium or nitrogen in Ti-N is shown to have the same effect on the optical properties.
Resumo:
This study examines the French versions of two marital satisfaction scales: the Dyadic Adjustment Scale (DAS) and the Partnership Questionnaire (PFB). 127 couples, married or living together for at least 3 years, participated in this research and each partner responded individually to both scales. The analysis revealed high internal consistencies for both scales and most of the subscales. Concerning the DAS, the factorial structure did not replicate the theoretical structure. Moreover, the structure underlying this scale seems unstable across cultures. On the other hand, the structure of the PFB seems reliable and stable through cultures. The correlation between the DAS and the PFB is high (r=.80) and the three canonical correlation variates explain about 60% of the variance of both scales. Both scales are sensitive to demographic variables and couple characteristics. The agreement within couples is high. The PFB seems well suited to assess marital satisfaction for clinical and research purposes.