913 resultados para Data-driven analysis
Resumo:
The papers aims at considering the issue of relative efficiency measurement in the context of the public sector. In particular, we consider the efficiency measurement approach provided by Data Envelopment Analysis (DEA). The application considered the main Brazilian federal universities for the year of 1994. Given the large number of inputs and outputs, this paper advances the idea of using factor analysis to explore common dimensions in the data set. Such procedure made possible a meaningful application of DEA, which finally provided a set of efficiency scores for the universities considered .
Resumo:
The increasing use of fossil fuels in line with cities demographic explosion carries out to huge environmental impact in society. For mitigate these social impacts, regulatory requirements have positively influenced the environmental consciousness of society, as well as, the strategic behavior of businesses. Along with this environmental awareness, the regulatory organs have conquered and formulated new laws to control potentially polluting activities, mostly in the gas stations sector. Seeking for increasing market competitiveness, this sector needs to quickly respond to internal and external pressures, adapting to the new standards required in a strategic way to get the Green Badge . Gas stations have incorporated new strategies to attract and retain new customers whom present increasingly social demand. In the social dimension, these projects help the local economy by generating jobs and income distribution. In this survey, the present research aims to align the social, economic and environmental dimensions to set the sustainable performance indicators at Gas Stations sector in the city of Natal/RN. The Sustainable Balanced Scorecard (SBSC) framework was create with a set of indicators for mapping the production process of gas stations. This mapping aimed at identifying operational inefficiencies through multidimensional indicators. To carry out this research, was developed a system for evaluating the sustainability performance with application of Data Envelopment Analysis (DEA) through a quantitative method approach to detect system s efficiency level. In order to understand the systemic complexity, sub organizational processes were analyzed by the technique Network Data Envelopment Analysis (NDEA) figuring their micro activities to identify and diagnose the real causes of overall inefficiency. The sample size comprised 33 Gas stations and the conceptual model included 15 indicators distributed in the three dimensions of sustainability: social, environmental and economic. These three dimensions were measured by means of classical models DEA-CCR input oriented. To unify performance score of individual dimensions, was designed a unique grouping index based upon two means: arithmetic and weighted. After this, another analysis was performed to measure the four perspectives of SBSC: learning and growth, internal processes, customers, and financial, unifying, by averaging the performance scores. NDEA results showed that no company was assessed with excellence in sustainability performance. Some NDEA higher efficiency Gas Stations proved to be inefficient under certain perspectives of SBSC. In the sequence, a comparative sustainable performance and assessment analyzes among the gas station was done, enabling entrepreneurs evaluate their performance in the market competitors. Diagnoses were also obtained to support the decision making of entrepreneurs in improving the management of organizational resources and promote guidelines the regulators. Finally, the average index of sustainable performance was 69.42%, representing the efforts of the environmental suitability of the Gas station. This results point out a significant awareness of this segment, but it still needs further action to enhance sustainability in the long term
Resumo:
The contents of some nutrients in 35 Brazilian green and roasted coffee samples were determined by flame atomic absorption spectrometry (Ca, Mg, Fe, Cu, Mn, and Zn), flame atomic emission photometry (Na and K) and Kjeldahl (N) after preparing the samples by wet digestion procedures using i) a digester heating block and ii) a conventional microwave oven system with pressure and temperature control. The accuracy of the procedures was checked using three standard reference materials (National Institute of Standards and Technology, SRM 1573a Tomato Leaves, SRM 1547 Peach Leaves, SRM 1570a Trace Elements in Spinach). Analysis of data after application of t-test showed that results obtained by microwave-assisted digestion were more accurate than those obtained by block digester at 95% confidence level. Additionally to better accuracy, other favorable characteristics found were lower analytical blanks, lower reagent consumption, and shorter digestion time. Exploratory analysis of results using Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that Na, K, Ca, Cu, Mg, and Fe were the principal elements to discriminate between green and roasted coffee samples. ©2007 Sociedade Brasileira de Química.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Given the importance the concept of productive efficiency has on analyzing the human development process, which is complex and multidimensional, this study conducts a literature review on the research works that have used the data envelopment analysis (DEA) to measure and analyze the development process. Therefore, we researched the databases of Scopus and Web of Science, and considered the following analysis dimensions: bibliometrics, scope, DEA models and extensions used, interfaces with other techniques, units analyzed and depth of analysis. In addition to a brief summary, the main gaps in each analysis dimension were assessed, which may serve to guide future researches. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The thesis objectives are to develop new methodologies for study of the space and time variability of Italian upper ocean ecosystem through the combined use of multi-sensors satellite data and in situ observations and to identify the capability and limits of remote sensing observations to monitor the marine state at short and long time scales. Three oceanographic basins have been selected and subjected to different types of analyses. The first region is the Tyrrhenian Sea where a comparative analysis of altimetry and lagrangian measurements was carried out to study the surface circulation. The results allowed to deepen the knowledge of the Tyrrhenian Sea surface dynamics and its variability and to defined the limitations of satellite altimetry measurements to detect small scale marine circulation features. Channel of Sicily study aimed to identify the spatial-temporal variability of phytoplankton biomass and to understand the impact of the upper ocean circulation on the marine ecosystem. An combined analysis of the satellite of long term time series of chlorophyll, Sea Surface Temperature and Sea Level field data was applied. The results allowed to identify the key role of the Atlantic water inflow in modulating the seasonal variability of the phytoplankton biomass in the region. Finally, Italian coastal marine system was studied with the objective to explore the potential capability of Ocean Color data in detecting chlorophyll trend in coastal areas. The most appropriated methodology to detect long term environmental changes was defined through intercomparison of chlorophyll trends detected by in situ and satellite. Then, Italian coastal areas subject to eutrophication problems were identified. This work has demonstrated that satellites data constitute an unique opportunity to define the features and forcing influencing the upper ocean ecosystems dynamics and can be used also to monitor environmental variables capable of influencing phytoplankton productivity.
Resumo:
Background Identifying modifiable factors that increase women's vulnerability to HIV is a critical step in developing effective female-initiated prevention interventions. The primary objective of this study was to pool individual participant data from prospective longitudinal studies to investigate the association between intravaginal practices and acquisition of HIV infection among women in sub-Saharan Africa. Secondary objectives were to investigate associations between intravaginal practices and disrupted vaginal flora; and between disrupted vaginal flora and HIV acquisition. Methods and Findings We conducted a meta-analysis of individual participant data from 13 prospective cohort studies involving 14,874 women, of whom 791 acquired HIV infection during 21,218 woman years of follow-up. Data were pooled using random-effects meta-analysis. The level of between-study heterogeneity was low in all analyses (I2 values 0.0%–16.1%). Intravaginal use of cloth or paper (pooled adjusted hazard ratio [aHR] 1.47, 95% confidence interval [CI] 1.18–1.83), insertion of products to dry or tighten the vagina (aHR 1.31, 95% CI 1.00–1.71), and intravaginal cleaning with soap (aHR 1.24, 95% CI 1.01–1.53) remained associated with HIV acquisition after controlling for age, marital status, and number of sex partners in the past 3 months. Intravaginal cleaning with soap was also associated with the development of intermediate vaginal flora and bacterial vaginosis in women with normal vaginal flora at baseline (pooled adjusted odds ratio [OR] 1.24, 95% CI 1.04–1.47). Use of cloth or paper was not associated with the development of disrupted vaginal flora. Intermediate vaginal flora and bacterial vaginosis were each associated with HIV acquisition in multivariable models when measured at baseline (aHR 1.54 and 1.69, p<0.001) or at the visit before the estimated date of HIV infection (aHR 1.41 and 1.53, p<0.001), respectively. Conclusions This study provides evidence to suggest that some intravaginal practices increase the risk of HIV acquisition but a direct causal pathway linking intravaginal cleaning with soap, disruption of vaginal flora, and HIV acquisition has not yet been demonstrated. More consistency in the definition and measurement of specific intravaginal practices is warranted so that the effects of specific intravaginal practices and products can be further elucidated.
Resumo:
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Resumo:
An important problem in unsupervised data clustering is how to determine the number of clusters. Here we investigate how this can be achieved in an automated way by using interrelation matrices of multivariate time series. Two nonparametric and purely data driven algorithms are expounded and compared. The first exploits the eigenvalue spectra of surrogate data, while the second employs the eigenvector components of the interrelation matrix. Compared to the first algorithm, the second approach is computationally faster and not limited to linear interrelation measures.
Resumo:
BACKGROUND: In clinical practice a diagnosis is based on a combination of clinical history, physical examination and additional diagnostic tests. At present, studies on diagnostic research often report the accuracy of tests without taking into account the information already known from history and examination. Due to this lack of information, together with variations in design and quality of studies, conventional meta-analyses based on these studies will not show the accuracy of the tests in real practice. By using individual patient data (IPD) to perform meta-analyses, the accuracy of tests can be assessed in relation to other patient characteristics and allows the development or evaluation of diagnostic algorithms for individual patients. In this study we will examine these potential benefits in four clinical diagnostic problems in the field of gynaecology, obstetrics and reproductive medicine. METHODS/DESIGN: Based on earlier systematic reviews for each of the four clinical problems, studies are considered for inclusion. The first authors of the included studies will be invited to participate and share their original data. After assessment of validity and completeness the acquired datasets are merged. Based on these data, a series of analyses will be performed, including a systematic comparison of the results of the IPD meta-analysis with those of a conventional meta-analysis, development of multivariable models for clinical history alone and for the combination of history, physical examination and relevant diagnostic tests and development of clinical prediction rules for the individual patients. These will be made accessible for clinicians. DISCUSSION: The use of IPD meta-analysis will allow evaluating accuracy of diagnostic tests in relation to other relevant information. Ultimately, this could increase the efficiency of the diagnostic work-up, e.g. by reducing the need for invasive tests and/or improving the accuracy of the diagnostic workup. This study will assess whether these benefits of IPD meta-analysis over conventional meta-analysis can be exploited and will provide a framework for future IPD meta-analyses in diagnostic and prognostic research.
Resumo:
Dynamic changes in ERP topographies can be conveniently analyzed by means of microstates, the so-called "atoms of thoughts", that represent brief periods of quasi-stable synchronized network activation. Comparing temporal microstate features such as on- and offset or duration between groups and conditions therefore allows a precise assessment of the timing of cognitive processes. So far, this has been achieved by assigning the individual time-varying ERP maps to spatially defined microstate templates obtained from clustering the grand mean data into predetermined numbers of topographies (microstate prototypes). Features obtained from these individual assignments were then statistically compared. This has the problem that the individual noise dilutes the match between individual topographies and templates leading to lower statistical power. We therefore propose a randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data. In addition, we propose a new criterion to select the optimal number of microstate prototypes based on cross-validation across subjects. After a formal introduction, the method is applied to a sample data set of an N400 experiment and to simulated data with varying signal-to-noise ratios, and the results are compared to existing methods. In a first comparison with previously employed statistical procedures, the new method showed an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing. We conclude that the proposed method is well-suited for the assessment of timing differences in cognitive processes. The increased statistical power allows identifying more subtle effects, which is particularly important in small and scarce patient populations.
Resumo:
The era of big data opens up new opportunities in personalised medicine, preventive care, chronic disease management and in telemonitoring and managing of patients with implanted devices. The rich data accumulating within online services and internet companies provide a microscope to study human behaviour at scale, and to ask completely new questions about the interplay between behavioural patterns and health. In this paper, we shed light on a particular aspect of data-driven healthcare: autonomous decision-making. We first look at three examples where we can expect data-driven decisions to be taken autonomously by technology, with no or limited human intervention. We then discuss some of the technical and practical challenges that can be expected, and sketch the research agenda to address them.