921 resultados para Damage to plants
Resumo:
"Issued May 1945."
Resumo:
1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.
Resumo:
Respiratory methods to estimate the amount of C in the soil microbial biomass and the relative contributions of prokaryotes and eukaryotes in the biomass were used to evaluate the influence of pesticides on the soil microflora. Experiments were conducted with 5 and 50 micrograms per gram of three fungicides, captan, thiram and verdesan. At 5 micrograms per gram they caused significant decreases (40%) in the biomass; the organomercury fungicide verdesan also caused a shift from fungal to bacterial dominance. Within 8 days, biomass in captan- and thiram-amended soils had recovered to that of controls. Although the fungal to bacterial balance was restored in verdesan-amended soils, biomass recovery was not complete. At 50 micrograms per gram the fungicides caused long-term decreases in the biomass and altered the relative proportions of the bacterial and fungal populations. Verdesan had the greatest effect on soil microbial biomass and competition.
Resumo:
In inflammatory diseases, release of oxidants leads to oxidative damage to biomolecules. HOCl (hypochlorous acid), released by the myeloperoxidase/H2O2/Cl- system, can cause formation of phospholipid chlorohydrins, or alpha-chloro-fatty aldehydes from plasmalogens. It can attack several amino acid residues in proteins, causing post-translational oxidative modifications of proteins, but the formation of 3-chlorotyrosine is one of the most stable markers of HOCl-induced damage. Soft-ionization MS has proved invaluable for detecting the occurrence of oxidative modifications to both phospholipids and proteins, and characterizing the products generated by HOCl-induced attack. For both phospholipids and proteins, the application of advanced mass spectrometric methods such as product or precursor ion scanning and neutral loss analysis can yield information both about the specific nature of the oxidative modification and the biomolecule modified. The ideal is to be able to apply these methods to complex biological or clinical samples, to determine the site-specific modifications of particular cellular components. This is important for understanding disease mechanisms and offers potential for development of novel biomarkers of inflammatory diseases. In the present paper, we review some of the progress that has been made towards this goal.
Resumo:
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers. © 2014 Behar-Cohen et al, This work is published by Dove Medical Press Ltd.
Resumo:
Chemical pollution by pesticides has been identified as a possible contributing factor to the massive mortality outbreaks observed in Crassostrea gigas for several years. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to the herbicide diuron at environmental concentrations during gametogenesis. This trans-generational effect occurs through damage to genitor-exposed gametes, as measured by the comet-assay. The presence of DNA damage in gametes could be linked to the formation of DNA damage in other germ cells. In order to explore this question, the levels and cell distribution of the oxidized base lesion 8-oxodGuo were studied in the gonads of exposed genitors. High-performance liquid chromatography coupled with UV and electrochemical detection analysis showed an increase in 8-oxodGuo levels in both male and female gonads after exposure to diuron. Immunohistochemistry analysis showed the presence of 8-oxodGuo at all stages of male germ cells, from early to mature stages. Conversely, the oxidized base was only present in early germ cell stages in female gonads. These results indicate that male and female genitors underwent oxidative stress following exposure to diuron, resulting in DNA oxidation in both early germ cells and gametes, such as spermatozoa, which could explain the transmission of diuron-induced DNA damage to offspring. Furthermore, immunostaining of early germ cells seems indicates that damages caused by exposure to diuron on germ line not only affect the current sexual cycle but also could affect future gametogenesis.
Resumo:
Non-B DNA structures like R-loops and G-quadruplexes play a pivotal role in several cellular vital processes like DNA transcription regulation. Misregulation of said non-canonical DNA structures can often lead to genome instability, DNA damage, and, eventually, to the activation of an innate immune response. For such reasons they have been studied as adjuvants in anticancer therapies. Here we studied drugs targeting R-loops (Top1 poisons) and G4s (hydrazone derivatives) in order to observe their effects in terms of DNA damage induction and, subsequently, activation of innate immune response. We studied how non-cytotoxic doses of ampthotecin and LMP-776 impact on genome instability, are capable to induce DNA damage and micronuclei, and, eventually lead to an innate immune gene response via the cGAS/STING pathway. G-quadruplexes are another ubiquitous, non-canonical DNA structure, more abundant in telomeric regions, demonstrating a marked relation with the impairment of telomerase and the regulation of DNA replication and transcription. Furthermore, we investigated the properties of new-synthesized molecules belonging to the highly promising class of hydrazone derivatives, in terms of cytotoxicity, ability to stabilize G4-structures, induce DNA damage, and activate interferon-B production. Both Top1 poisons and G4-stabilizers possess several features that can be very useful in clinical applications, in light of their ability to stimulate innate immune response factors and exert a certain cell-killing power, plus they offer a broad and diverse range of treatment options in order to face a variety of patient treatment needs. It is for these very reasons that it is of uttermost importance that further studies are conducted on these compounds, in order to synthesize new and increasingly powerful and flexible ones, with fewer side effects to customize therapies on specific cancers’ and patients’ features.
Resumo:
An experimental laboratory was designed and assembled at the Botanical Institute of So Paulo, Brazil, in order to research atmosphere-plant interactions through the use of a system of fumigation chambers. A system of three ""closed"" fumigation chambers was designed to be used inside or outside the laboratory. The system was built to be used with a single pollutant or a mix of them. The innovation in this system is to allow chemical reactions inside the chambers that simulate atmospheric chemistry, especially photochemical processes involving high levels of ozone. Assessment of the performance and applicability of the system was based on the response of Nicotiana tabacum Bel W3 exposed to ozone produced alternatively by a generator and inside the chamber by reactions of its precursors. The results showed that the system can be well applied to the study of atmospheric chemistry interactions and the effects on plants.
Resumo:
Insect pests that have a root-feeding larval stage often cause the most sustained damage to plants because their attrition remains largely unseen, preventing early diagnosis and treatment. Characterising movement and dispersal patterns of subterranean insects is inherently difficult due to the difficulty in observing their behaviour. Our understanding of dispersal and movement patterns of soil-dwelling insects is therefore limited compared to above ground insect pests and tends to focus on vertical movements within the soil profile or assessments of coarse movement patterns taken from soil core measurements in the field. The objective of this study was to assess how the dispersal behaviour of the clover root weevil (CRW), Sitona lepidus larvae was affected by differing proportions of host (clover) and non-host (grass) plants under different soil water contents (SWC). This was undertaken in experimental mini-swards that allowed us to control plant community structure and soil water content. CRW larval survival was not affected either by white clover content or planting pattern or SWC in either experiment; however, lower clover composition in the sward resulted in CRW larvae dispersing further from where they hatched. Because survival was the same regardless of clover density, the proportion of infested plants was highest in sward boxes with the fewest clover plants (i.e. the low host plant density). Thus, there is potential for clover plants over a larger area to be colonised when the clover content of the sward is low.
Resumo:
Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles
Resumo:
A entrada de agentes fitopatogênicos em novas localidades através de mudas infectadas constitui uma das principais formas de disseminação. Meloidogyne enterolobii é uma espécie de nematoide altamente virulenta que tem causado sérios danos a plantas cultivadas no Brasil. Neste trabalho é relatada a primeira ocorrência de M. enterolobii em mudas de muricizeiro (Byrsonima cydoniifolia), uma planta nativa da Amazônia e em mudas de goiabeira (Psidium guajava), no Estado de Mato Grosso. Com base nos caracteres morfológicos do padrão perineal de fêmeas, região labial dos machos e no fenótipo isoenzimático de esterase, foi confirmado que a espécie encontrada tanto nas mudas de muricizeiro quanto nas de goiabeira é M. enterolobii.