242 resultados para DXA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The World Health Organization (WHO) criteria for the diagnosis of osteoporosis are mainly applicable for dual X-ray absorptiometry (DXA) measurements at the spine and hip levels. There is a growing demand for cheaper devices, free of ionizing radiation such as promising quantitative ultrasound (QUS). In common with many other countries, QUS measurements are increasingly used in Switzerland without adequate clinical guidelines. The T-score approach developed for DXA cannot be applied to QUS, although well-conducted prospective studies have shown that ultrasound could be a valuable predictor of fracture risk. As a consequence, an expert committee named the Swiss Quality Assurance Project (SQAP, for which the main mission is the establishment of quality assurance procedures for DXA and QUS in Switzerland) was mandated by the Swiss Association Against Osteoporosis (ASCO) in 2000 to propose operational clinical recommendations for the use of QUS in the management of osteoporosis for two QUS devices sold in Switzerland. Device-specific weighted "T-score" based on the risk of osteoporotic hip fractures as well as on the prediction of DXA osteoporosis at the hip, according to the WHO definition of osteoporosis, were calculated for the Achilles (Lunar, General Electric, Madison, Wis.) and Sahara (Hologic, Waltham, Mass.) ultrasound devices. Several studies (totaling a few thousand subjects) were used to calculate age-adjusted odd ratios (OR) and area under the receiver operating curve (AUC) for the prediction of osteoporotic fracture (taking into account a weighting score depending on the design of the study involved in the calculation). The ORs were 2.4 (1.9-3.2) and AUC 0.72 (0.66-0.77), respectively, for the Achilles, and 2.3 (1.7-3.1) and 0.75 (0.68-0.82), respectively, for the Sahara device. To translate risk estimates into thresholds for clinical application, 90% sensitivity was used to define low fracture and low osteoporosis risk, and a specificity of 80% was used to define subjects as being at high risk of fracture or having osteoporosis at the hip. From the combination of the fracture model with the hip DXA osteoporotic model, we found a T-score threshold of -1.2 and -2.5 for the stiffness (Achilles) determining, respectively, the low- and high-risk subjects. Similarly, we found a T-score at -1.0 and -2.2 for the QUI index (Sahara). Then a screening strategy combining QUS, DXA, and clinical factors for the identification of women needing treatment was proposed. The application of this approach will help to minimize the inappropriate use of QUS from which the whole field currently suffers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nationwide survey was conducted in Switzerland to assess the quality level of osteoporosis management in patients aged 50 years or older presenting with a fragility fracture to the emergency ward of the participating hospitals. Eight centres recruited 4966 consecutive patients who presented with one or more fractures between 2004 and 2006. Of these, 3667 (2797 women, 73.8 years old and 870 men, 73.0 years old in average) were considered as having a fragility fracture and included in the survey. Included patients presented with a fracture of the upper limbs (30.7%), lower limbs (26.4%), axial skeleton (19.5%) or another localisation, including malleolar fractures (23.4%). Thirty-two percent reported one or more previous fractures during adulthood. Of the 2941 (80.2%) hospitalised women and men, only half returned home after discharge. During diagnostic workup, dual x-ray absorptiometry (DXA) measurement was performed in 31.4% of the patients only. Of those 46.0% had a T-score < or =-2.5 SD and 81.1% < or =-1.0 SD. Osteoporosis treatment rate increased from 26.3% before fracture to 46.9% after fracture in women and from 13.0% to 30.3% in men. However, only 24.0% of the women and 13.8% of the men were finally adequately treated with a bone active substance, generally an oral bisphosphonate, with or without calcium / vitamin D supplements. A positive history of previous fracture vs none increased the likelihood of getting treatment with a bone active substance (36.6 vs 17.9%, ? 18.7%, 95% CI 15.1 to 22.3, and 22.6 vs 9.9%, ? 12.7%, CI 7.3 to 18.5, in women and men, respectively). In Switzerland, osteoporosis remains underdiagnosed and undertreated in patients aged 50 years and older presenting with a fragility fracture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Trabecular bone score (TBS) seems to provide additive value on BMD to identify individuals with prevalent fractures in T1D. TBS did not significantly differ between T1D patients and healthy controls, but TBS and HbA1c were independently associated with prevalent fractures in T1D. A TBS cutoff <1.42 reflected prevalent fractures with 91.7 % sensitivity and 43.2 % specificity. INTRODUCTION: Type 1 diabetes (T1D) increases the risk of osteoporotic fractures. TBS was recently proposed as an indirect measure of bone microarchitecture. This study aimed at investigating the TBS in T1D patients and healthy controls. Associations with prevalent fractures were tested. METHODS: One hundred nineteen T1D patients (59 males, 60 premenopausal females; mean age 43.4 ± 8.9 years) and 68 healthy controls matched for gender, age, and body mass index (BMI) were analyzed. The TBS was calculated in the lumbar region, based on two-dimensional (2D) projections of DXA assessments. RESULTS: TBS was 1.357 ± 0.129 in T1D patients and 1.389 ± 0.085 in controls (p = 0.075). T1D patients with prevalent fractures (n = 24) had a significantly lower TBS than T1D patients without fractures (1.309 ± 0.125 versus 1.370 ± 0.127, p = 0.04). The presence of fractures in T1D was associated with lower TBS (odds ratio = 0.024, 95 % confidence interval (CI) = 0.001-0.875; p = 0.042) but not with age or BMI. TBS and HbA1c were independently associated with fractures. The area-under-the curve (AUC) of TBS was similar to that of total hip BMD in discriminating T1D patients with or without prevalent fractures. In this set-up, a TBS cutoff <1.42 discriminated the presence of fractures with a sensitivity of 91.7 % and a specificity of 43.2 %. CONCLUSIONS: TBS values are lower in T1D patients with prevalent fractures, suggesting an alteration of bone strength in this subgroup of patients. Reliable TBS cutoffs for the prediction of fracture risk in T1D need to be determined in larger prospective studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the bone mineral content (BMC) in young women with Adolescent Idiopathic Scoliosis (AIS), treated with a brace (27.9 ±21.6 months, for 18.0±5.4 h/d) during adolescence (AIS-B, n = 15, 25.6 ±5.8 yrs), versus women with AIS but no treatment (AIS-NB, n = 15, 24.0 ±4.0 yrs), and women without AIS (C, n = 19, 23.5 ±3.8 yrs). After controlling for lean body mass, calcium and vitamin D daily intake, and strenuous physical activity, femoral neck BMC was lower in the AIS-B compared with AIS-NB and C (all p’s < .05). In summary, women with AIS, braced during their growing years are characterized by low lower limb BMC. However, the lack of a relationship between brace treatment duration and BMC, suggests that bracing was not the likely mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Adolescent idiopathic scoliosis (AIS) is often associated with low bone mineral content and density (BMC, BMD). Bracing, used to manage spine curvature, may interfere with the growth-related BMC accrual, resulting in reduced bone strength into adulthood. The purpose of this study was to assess the effects of brace treatment on BMC in adult women, diagnosed with AIS and braced in early adolescence. Methods: Participants included women with AIS who: (i) underwent brace treatment (AIS-B, n = 15, 25.6 ± 5.8 yrs), (ii) underwent no treatment (AIS, n = 15, 24.0 ± 4.0 yrs), and (iii) a healthy comparison group (CON, n = 19, 23.5 ± 3.8 yrs). BMC and body composition were assessed using dual-energy X-ray absorptiometry. Differences between groups were examined using a oneway ANOVA or ANCOVA, as appropriate. Results: AIS-B underwent brace treatment 27.9 ± 21.6 months, for 18.0 ± 5.4 h/d. Femoral neck BMC was lower (p = 0.06) in AIS-B (4.54 ± 0.10 g) compared with AIS (4.89 ± 0.61 g) and CON (5.07 ± 0.58 g). Controlling for lean body mass, calcium and vitamin D daily intake, and strenuous physical activity, femoral neck BMC was statistically different (p = 0.02) between groups. A similar pattern was observed at other lower extremity sites (p < 0.05), but not in the spine or upper extremities. BMC and BMD did not correlate with duration of brace treatment, duration of daily brace wear, or overall physical activity. Conclusion: Young women with AIS, especially those who were treated with a brace, have significantly lower BMC in their lower limbs compared to women without AIS. However, the lack of a relationship between brace treatment duration during adolescence and BMC during young adulthood, suggests that the brace treatment is not the likely mechanism of the low BMC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aimed at evaluating the relationship of lean and fat mass to bone mass in osteoporotic postmenopausal women. We invited 65 women who were being treated at the Sao Paulo Hospital osteoporosis outpatients` clinic to participate. Body composition and bone mineral density (BMD) measurements were performed using Dual-energy X-ray absorptiometry methodology (DXA). The mean age and weight were 69.7 +/- 6.4 years and 56.3 +/- 7.6 kg, respectively. Accordingly to the body mass index (BMI), 52.8% were of normal weight and 47.1% of the patients were overweight. Overweight women had significantly higher bone mass. Similarly, skeletal muscle index (SMI) showed a positive effect on BMD measurements and women with sarcopenia had significantly lower BMD measurements in total femur and femoral neck. In multiple regression analysis only lean mass and age, after adjustments to fat mass and BMI, were able to predict total body bone mineral content (BMC) (R(2) = 28%). Also lean mass adjusted to age and BMI were able to predict femoral neck BMD (R(2) = 14%). On the other hand, none of the components of the body composition (lean mass or fat mass) contributed significantly to explaining total femur BMD and neither body composition measurements were associated with spine BMD. These findings suggest that lean mass has a relevant role in BMC and BMD measurements. In addition, lower BMI and lean mass loss (sarcopenia) is associated to lower BMC and BMD of femoral neck and total femur and possible higher risk of osteoporotic fracture. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise during growth results in biologically important increases in bone mineral content (BMC). The aim of this study was to determine whether the effects of loading were site specific and depended on the maturational stage of the region. BMC and humeral dimensions were determined using DXA and magnetic resonance imaging (MRI) of the loaded and nonloaded arms in 47 competitive female tennis players aged 8-17 years. Periosteal (external) cross-sectional area (CSA), cortical area, medullary area, and the polar second moments of area (Ip, mm4) were calculated at the mid and distal sites in the loaded and nonloaded arms. BMC and I p of the humerus were 11-14% greater in the loaded arm than in the nonloaded arm in prepubertal players and did not increase further in peri- or postpubertal players despite longer duration of loading (both, p < 0.01). The higher BMC was the result of a 7-11% greater cortical area in the prepubertal players due to greater periosteal than medullary expansion at the midhumerus and a greater periosteal expansion alone at the distal humerus. Loading late in puberty resulted in medullary contraction. Growth and the effects of loading are region and surface specific, with periosteal apposition before puberty accounting for the increase in the bone's resistance to torsion and endocortical contraction contributing late in puberty conferring little increase in resistance to torsion. Increasing the bone's rt.osistance to torsion is achieved hy modifying bone shape and mass, not necessarily bone density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim was to investigate whether the addition of supervised high intensity progressive resistance training to a moderate weight loss program (RT+WLoss) could maintain bone mineral density (BMD) and lean mass compared to moderate weight loss (WLoss) alone in older overweight adults with type 2 diabetes. We also investigated whether any benefits derived from a supervised RT program could be sustained through an additional home-based program. This was a 12-month trial in which 36 sedentary, overweight adults aged 60 to 80 years with type 2 diabetes were randomized to either a supervised gymnasium-based RT+WLoss or WLoss program for 6 months (phase 1). Thereafter, all participants completed an additional 6-month home-based training without further dietary modification (phase 2). Total body and regional BMD and bone mineral content (BMC), fat mass (FM) and lean mass (LM) were assessed by DXA every 6 months. Diet, muscle strength (1-RM) and serum total testosterone, estradiol, SHBG, insulin and IGF-1 were measured every 3 months. No between group differences were detected for changes in any of the hormonal parameters at any measurement point. In phase 1, after 6 months of gymnasium-based training, weight and FM decreased similarly in both groups (P<0.01), but LM tended to increase in the RT+WLoss (n=16) relative to the WLoss (n=13) group [net difference (95% CI), 1.8% (0.2, 3.5), P<0.05]. Total body BMD and BMC remained unchanged in the RT+WLoss group, but decreased by 0.9 and 1.5%, respectively, in the WLoss group (interaction, P<0.05). Similar, though non-significant, changes were detected at the femoral neck and lumbar spine (L2-L4). In phase 2, after a further 6 months of home-based training, weight and FM increased significantly in both the RT+WLoss (n=14) and WLoss (n=12) group, but there were no significant changes in LM or total body or regional BMD or BMC in either group from 6 to 12 months. These results indicate that in older, overweight adults with type 2 diabetes, dietary modification should be combined with progressive resistance training to optimize the effects on body composition without having a negative effect on bone health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: It remains uncertain whether long-term participation in regular weight-bearing exercise confers an advantage to bone structure and strength in old age. The aim of this study was to investigate the relationship between lifetime sport and leisure activity participation on bone material and structural properties at the axial and appendicular skeleton in older men (>50 years).

Methods: We used dual-energy X-ray absorptiometry (DXA) to assess hip, spine and ultradistal (UD) radius areal bone mineral density (aBMD) (n=161), quantitative ultrasound (QUS) to measure heel bone quality (n=161), and quantitative computed tomography (QCT) to assess volumetric BMD, bone geometry and strength at the spine (L1–L3) and mid-femur (n=111). Current (>50+ years) and past hours of sport and leisure activity participation during adolescence (13–18 years) and adulthood (19–50 years) were assessed by questionnaire. This information was used to calculate the total time (min) spent participating in sport and leisure activities and an osteogenic index (OI) score for each participant, which provides a measure of participation in weight-bearing activities.

Results:
Regression analysis revealed that a greater lifetime (13–50+ years) and mid-adulthood (19–50 years) OI, but not total time (min), was associated with a greater mid-femur total and cortical area, cortical bone mineral content (BMC), and the polar moment of inertia (I p) and heel VOS (p ranging from <0.05 to <0.01). These results were independent of age, height (or femoral length) and weight (or muscle cross-sectional area). Adolescent OI scores were not found to be significant predictors of bone structure or strength. Furthermore, no significant relationships were detected with areal or volumetric BMD at any site. Subjects were then categorized into either a high (H) or low/non-impact (L) group during adolescence (13–18 years) and adulthood (19–50+ years) according to their OI scores during each of these periods. Three groups were subsequently formed to reflect weight-bearing impact categories during adolescence and then adulthood: LL, HL and HH. Compared to the LL group, mid-femur total and cortical area, cortical BMC and I p were 6.5–14.2% higher in the HH group. No differences were detected between the LL and HL groups.

Conclusions:
In conclusion, these findings indicate that long-term regular participation in sport and leisure activities categorized according to an osteogenic index [but not the total time (min) spent participating in all sport and leisure activities] was an important determinant of bone size, quality and strength, but not BMD, at loaded sites in older men. Furthermore, continued participation in weight-bearing exercise in early to mid-adulthood appears to be important for reducing the risk of low bone strength in old age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Reported effects of body composition and lifestyle of bone mineral density in pre-elderly adult women have been inconsistent.

Methods: In a co-twin study of 146 female twin pairs aged 30 to 65 years, DXA was used to measure bone mineral density at the lumbar spine, total hip, and forearm, total body bone mineral content, and lean and fat mass. Height and weight were measured. Menopausal status, dietary calcium intake, physical activity, current tobacco use, and alcohol consumption were determined by questionnaire. Within-pair differences in bone measures were regressed through the origin against within-pair differences in putative determinants.

Results: Lean mass and fat mass were associated with greater bone mass at all sites. A discordance of 10 pack-years smoking was related to a 2.3-3.3% (SE, 0.8-1.0) decrease in bone density at all sites except the forearm, with the effects more evident in postmenopausal women. In all women, a 0.8% (SE, 0.3) difference in hip bone mineral density was associated with each hour per week difference in sporting activity, with effects more evident in premenopausal women. Daily dietary calcium intake was related to total body bone mineral content and forearm bone mineral density (1.4 ± 0.7% increase for every 1000 mg). Lifetime alcohol consumption and walking were not consistently related to bone mass.

Conclusion: Several lifestyle and dietary factors, in particular tobacco use, were related to bone mineral density. Effect sizes varied by site. Characterization of determinants of bone mineral density in midlife and thereafter may lead to interventions that could minimize postmenopausal bone loss and reduce osteoporotic fracture risk.



Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To assess the effectiveness of a year-long workplace weight loss program in reducing risk factors of coronary heart disease.

Design: A randomised, controlled study of low fat (25% of dietary energy) diet- and/or moderate exercise-induced weight loss interventions in free-living, middle-aged men. Compliance was monitored from food and activity diaries at monthly blood pressure measurement sessions. Blood was sampled and body composition determined from dual energy X-ray absorptiometry before and after 12 months.

Subjects and setting: Fifty-eight overweight men (mean [+ or -] SD age: 43.4 [+ or -] 5.7 years; BMI 29.0 [+ or -] 2.6 kg/[m.sup.2]), recruited from a national corporation, were instructed into diet (n = 18) exercise (a 21) or control (n = 19) groups over 12 months; 16 control subjects combined diet and exercise (n = 16) for the subsequent 12 months.

Main outcome measures: At 12 months, weight, total and regional fat and lean mass, dietary energy and percentage dietary fat intake, physical activity indices, systolic and diastolic blood pressure, serum insulin, blood lipids and lipoproteins.

Statistical analyses: Differences between groups were tested using analysis of variance with Scheffe post hoc test. Differences between pre- and post-intervention variables were tested using Students' paired t-tests. Pearson's correlation coefficient and univariate linear regression identified association between dependent variables, multiple stepwise regression identified specific predictors.

Results: Weight loss with either diet or exercise resulted in a reduction in systolic blood pressure (-3.3 [+ or -] 1.7%), diastolic blood pressure (-4.8 [+ or -] 1.3%) and LDL cholesterol (-3.9 [+ or -] 2.8%), a rise in HDL cholesterol (+10.0 [+ or -] 3.8%) and a change in the LDL/HDL ratio (-8.9 [+ or -] 3.5%). Abdominal fat loss (-26.8 [+ or -] 3.6% after diet; -16.6 [+ or -] 4.5% after exercise; -21.0 [+ or -] 4.7% after diet and exercise) was the strongest predictor of change in blood pressure: twenty percent abdominal fat loss predicted a percentage fall of 2.4 [+ or -] 0.05% in systolic blood pressure and 5.4 [+ or -] 0.07% in diastolic blood pressure. Greater abdominal fat loss was associated with the greatest decrease in serum insulin (P < 0.05).

Conclusion: Modest changes in diet and exercise effected by a low cost workplace-based education program achieved weight loss, loss of abdominal fat, reduced blood pressure and serum insulin and improved blood lipid concentrations. (Nutr Diet 2002;59:87-96)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty female Large White × Landrace pigs (average weight 57·2 (SD 1·9) kg) were allocated to one of six dietary treatments containing 0, 1·25, 2·5, 5·0, 7·5 or 10·0 g 55 % conjugated linoleic acids (CLA) isomers (CLA-55)/kg diet and fed for 8 weeks. Each pig was scanned at 0, 28 and 56 d and again at post slaughter using dual-energy X-ray absorptiometry (DXA) to determine the temporal pattern of body composition responses. Values determined by DXA were adjusted using regression equations generated from validation experiments between chemically and DXA-predicted values. Overall, there was a significant linear reduction in fat content with the increasing levels of CLA in the diet (P=0·007, P=0·011, P=0·008 at week 4, week 8 and for the carcass, respectively). The greatest improvement was recorded at the early stages of CLA supplementation and for the highest dose of CLA (week 4, -19·2 % compared with week 8, -13·7 %). In the first 4 weeks of feeding CLA, pigs receiving 10 g CLA-55/kg diet deposited 93 g less fat/d than pigs fed basal diets (P=0·002) compared with only 6 g less fat than control animals in the final 4 weeks. Lean content and lean deposition rate were maximised at 5 and 2·5 g CLA-55/kg diet for the first 4 weeks (P=0·016) and the final 4 weeks of treatment (P=0·17), respectively. DXA estimates of bone mineral content and bone mineral density were not affected by CLA supplementation throughout the experiment. These data demonstrate that dietary CLA decreases body fat in a dose-dependent manner and that the response is greatest over the initial 4 weeks of treatment.