995 resultados para DNA-NETWORK
Resumo:
The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. In this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and genes involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies
Resumo:
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network.
Resumo:
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.
Resumo:
DNA fragments with stretches of cytosine residues can fold into four-stranded structures in which two parallel duplexes, held together by hemiprotonated cytosine.cytosine+ (C.C+) base pairs, intercalate into each other with opposite polarity. The structural details of this intercalated DNA quadruplex have been assessed by solution NMR and single crystal x-ray diffraction studies of cytosine-rich sequences, including those present in metazoan telomeres. A conserved feature of these structures is the absence of stabilizing stacking interactions between the aromatic ring systems of adjacent C.C+ base pairs from intercalated duplexes. Effective stacking involves only the exocyclic keto groups and amino groups of the cytidine bases. The apparent absence of stability provided by stacking interactions between the bases in this intercalated DNA has prompted us to examine the available structures in detail, in particular with regard to unusual features that could compensate for the lack of base stacking. In addition to base-on-deoxyribose stacking and intra-cytidine C-H...O hydrogen bonds, this analysis reveals the presence of a hitherto unobserved, systematic intermolecular C-H...O hydrogen bonding network between the deoxyribose sugar moieties of antiparallel backbones in the four-stranded molecule.
Resumo:
Hox genes encode transcription factors that regulate morphogenesis in all animals with bilateral symmetry. Although Hox genes have been extensively studied, their molecular function is not clear in vertebrates, and only a limited number of genes regulated by Hox transcription factors have been identified. Hoxa2 is required for correct development of the second branchial arch, its major domain of expression. We now show that Meox1 is genetically downstream from Hoxa2 and is a direct target. Meox1 expression is downregulated in the second arch of Hoxa2 mouse mutant embryos. In chromatin immunoprecipitation (ChIP), Hoxa2 binds to the Meox1 proximal promoter. Two highly conserved binding sites contained in this sequence are required for Hoxa2-dependent activation of the Meox1 promoter. Remarkably, in the absence of Meox1 and its close homolog Meox2, the second branchial arch develops abnormally and two of the three skeletal elements patterned by Hoxa2 are malformed. Finally, we show that Meox1 can specifically bind the DNA sequences recognized by Hoxa2 on its functional target genes. These results provide new insight into the Hoxa2 regulatory network that controls branchial arch identity.
Resumo:
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.
Resumo:
The central dogma of molecular biology relies on the correct Watson-Crick (WC) geometry of canonical deoxyribonucleic acid (DNA) dG•dC and dA•dT base pairs to replicate and transcribe genetic information with speed and an astonishing level of fidelity. In addition, the Watson-Crick geometry of canonical ribonucleic acid (RNA) rG•rC and rA•rU base pairs is highly conserved to ensure that proteins are translated with high fidelity. However, numerous other potential nucleobase tautomeric and ionic configurations are possible that can give rise to entirely new pairing modes between the nucleotide bases. Very early on, James Watson and Francis Crick recognized their importance and in 1953 postulated that if bases adopted one of their less energetically disfavored tautomeric forms (and later ionic forms) during replication it could lead to the formation of a mismatch with a Watson-Crick-like geometry and could give rise to “natural mutations.”
Since this time numerous studies have provided evidence in support of this hypothesis and have expanded upon it; computational studies have addressed the energetic feasibilities of different nucleobases’ tautomeric and ionic forms in siico; crystallographic studies have trapped different mismatches with WC-like geometries in polymerase or ribosome active sites. However, no direct evidence has been given for (i) the direct existence of these WC-like mismatches in canonical DNA duplex, RNA duplexes, or non-coding RNAs; (ii) which, if any, tautomeric or ionic form stabilizes the WC-like geometry. This thesis utilizes nuclear magnetic resonance (NMR) spectroscopy and rotating frame relaxation dispersion (R1ρ RD) in combination with density functional theory (DFT), biochemical assays, and targeted chemical perturbations to show that (i) dG•dT mismatches in DNA duplexes, as well as rG•rU mismatches RNA duplexes and non-coding RNAs, transiently adopt a WC-like geometry that is stabilized by (ii) an interconnected network of rapidly interconverting rare tautomers and anionic bases. These results support Watson and Crick’s tautomer hypothesis, but additionally support subsequent hypotheses invoking anionic mismatches and ultimately tie them together. This dissertation shows that a common mismatch can adopt a Watson-Crick-like geometry globally, in both DNA and RNA, and whose geometry is stabilized by a kinetically linked network of rare tautomeric and anionic bases. The studies herein also provide compelling evidence for their involvement in spontaneous replication and translation errors.
Resumo:
Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24 %, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level. Molecular clock application revealed that the evolutionary history of O. similis s.l. is possibly closely associated with the reorganization of the ocean circulation in the mid Miocene and may be an example of allopatric speciation in the pelagic zone.
Resumo:
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAO∆ampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.
Resumo:
Despite Springer’s (1964) revision of the sharpnose sharks (genus Rhizoprionodon), the taxonomic definition and ranges of Rhizoprionodon in the western Atlantic Ocean remains problematic. In particular, the distinction between Rhizoprionodon terraenovae and R. porosus, and the occurrence of R. terraenovae in South American waters are unresolved issues involving common and ecologically important species in need of fishery management in Caribbean and southwest Atlantic waters. In recent years, molecular markers have been used as efficient tools for the detection of cryptic species and to address controversial taxonomic issues. In this study 415 samples of the genus Rhizoprionodon captured in the western Atlantic Ocean from Florida to southern Brazil were examined for sequences of the COI gene and the D-loop and evaluated for nucleotide differences. The results on nucleotide composition, AMOVA tests, and relationship distances using Bayesian-likelihood method and haplotypes network, corroborates Springer’s (1964) morphometric and meristic finding and provide strong evidence that supports consideration of R. terraenovae and R. porosus as distinct species.
Resumo:
The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVolH), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 mL urine sample (1:10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 90 mL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r2 . 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 mg mL21 and the LOQ from 0.00023 to 0.13 mg mL21. The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n=3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVolHMEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.