966 resultados para DNA Mismatch Repair


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. We performed a case-comparison study to describe the characteristics of LUS tumors and their association with risk factors for endometrial cancer. ^ Patients and Methods. From January 1996 through October 2007, 3,892 women were identified with a diagnosis of primary endometrial carcinoma or primary cervical adenocarcinoma. Pathology records from the 1,009 women who had a hysterectomy were reviewed. Subjects were included in the LUS group only if the tumor was clearly originating from the area between the lower corpus and upper cervix in the hysterectomy specimen. The LUS group was compared to all patients with endometrial corpus carcinoma who underwent hysterectomy at our institution in a 12-month period randomly selected from the study period. Risk factors for endometrial carcinoma such as body mass index (BMI) and Lynch Syndrome were assessed. Expression of estrogen receptor (ER), vimentin, carcinoembryonic antigen (CEA), p16, and human papilloma virus DNA (HPV DNA) was assessed; this panel is known to be effective in distinguishing adenocarcinomas of endometrial versus endocervical origin. Fisher's Exact, Chi-square, Mann-Whitney, and Student's t-tests were utilized for statistical analysis. ^ Results. Thirty-five of 1,009 women had endometrial carcinoma of the LUS (3.5%; 95% CI: 2–4%). Compared to patients with corpus tumors, LUS patients were younger (54.2 vs. 62.9 years, P = .001), had higher stage (P < .001), and more invasive tumors (P = .001). Preoperative diagnosis of the LUS tumors more frequently included the possibility of endocervical adenocarcinoma ( P < .001), leading to preoperative radiation therapy in 4 patients. Median BMI was similar in the LUS and corpus groups. Seventy-three percent of the available LUS tumors had a similar immunohistochemical expression pattern to conventional endometrioid adenocarcinoma. Because of the young median age for the LUS group, we performed immunohistochemistry for Lynch syndrome-associated DNA mismatch repair proteins MLH1, MSH2, MSH6, and PMS2. Microsatellite instability testing (MSI) and MLH1 promoter hypermethylation were performed when indicated. Thirty-six percent of the LUS tumors were MSI-high. Ten of thirty-five (29%) women with LUS tumors were either confirmed to have Lynch Syndrome or were strongly suspected to have Lynch Syndrome based on tissue-based molecular assays (95% CI, 16 to 45%). ^ Conclusions. Endometrial carcinoma arising in the LUS is a clinical and pathologic entity which can be diagnostically confused with cervical adenocarcinoma. In general, LUS tumors can be correctly identified as being endometrial carcinoma using the immunohistochemical panel noted above. The prevalence of Lynch Syndrome in patients with LUS tumors is much greater than that of the general endometrial cancer population (1.8%) or in endometrial cancer patients younger than 50 years of age (8–9%). Based on our results, the possibility of Lynch Syndrome should be considered in women with LUS tumors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Lynch Syndrome (LS) is a familial cancer syndrome with a high prevalence of colorectal and endometrial carcinomas among affected family members. Clinical criteria, developed from information obtained from familial colorectal cancer registries, have been generated to identify individuals at elevated risk for having LS. In 2007, the Society of Gynecologic Oncology (SGO) codified criteria to assist in identifying women presenting with gynecologic cancers at elevated risk for having LS. These criteria have not been validated in a population-based setting. Materials and Methods: We retrospectively identified 412, unselected endometrial cancer cases. Clinical and pathologic information were obtained from the electronic medical record, and all tumors were tested for expression of the DNA mismatch repair proteins through immunohistochemistry. Tumors exhibiting loss of MSH2, MSH6 and PMS2 were designated as probable Lynch Syndrome (PLS). For tumors exhibiting immunohistochemical loss of MLH1, we used the PCR-based MLH1 methylation assay to delineate PLS tumors from sporadic tumors. Samples lacking methylation of the MLH1 promoter were also designated as PLS. The sensitivity and specificity for SGO criteria for detecting PLS tumors was calculated. We compared clinical and pathologic features of sporadic tumors and PLS tumors. A simplified cost-effectiveness analysis was also performed comparing the direct costs of utilizing SGO criteria vs. universal tumor testing. Results: In our cohort, 43/408 (10.5%) of endometrial carcinomas were designated as PLS. The sensitivity and specificity of SGO criteria to identify PLS cases were 32.7 and 77%, respectively. Multivariate analysis of clinical and pathologic parameters failed to identify statistically significant differences between sporadic and PLS tumors with the exception of tumors arising from the lower uterine segment. These tumors were more likely to occur in PLS tumors. Cost-effectiveness analysis showed clinical criteria and universal testing strategies cost $6,235.27/PLS case identified and $5,970.38/PLS case identified, respectively. Conclusions: SGO 5-10% criteria successfully identify PLS cases among women who are young or have significant family history of LS related tumors. However, a larger proportion of PLS cases occurring at older ages with less significant family history are not detected by this screening strategy. Compared to SGO clinical criteria, universal tumor testing is a cost effective strategy to identify women presenting with endometrial cancer who are at elevated risk for having LS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensitive to the mutagenic effects of temozolomide. Experiments using Msh2-deficient cells in vitro suggest that an element of this effect is attributable to increased clonogenicity. Indeed, we show that Msh2 plays a role in the in vivo initiation of apoptosis after treatment with temozolomide, N-methyl-N′-nitro-N-nitrosoguanidine, and cisplatin. This was not influenced by the in vivo depletion of O6-alkylguanine-DNA-alkyltransferase after administration of O6-benzylguanine . By analyzing mice mutant for both Msh2 and p53, we found that the Msh2-dependent apoptotic response was primarily mediated through a p53-dependent pathway. Msh2 also was required to signal delayed p53-independent death. Taken together, these studies characterize an in vivo Msh2-dependent apoptotic response to methylating agents and raise the possibility that Msh2 deficiency may predispose to malignancy not only through failed repair of mismatch DNA lesions but also through the failure to engage apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inactivation of the genes involved in DNA mismatch repair is associated with microsatellite instability (MSI) in colorectal cancer. We report that hypermethylation of the 5′ CpG island of hMLH1 is found in the majority of sporadic primary colorectal cancers with MSI, and that this methylation was often, but not invariably, associated with loss of hMLH1 protein expression. Such methylation also occurred, but was less common, in MSI− tumors, as well as in MSI+ tumors with known mutations of a mismatch repair gene (MMR). No hypermethylation of hMSH2 was found. Hypermethylation of colorectal cancer cell lines with MSI also was frequently observed, and in such cases, reversal of the methylation with 5-aza-2′-deoxycytidine not only resulted in reexpression of hMLH1 protein, but also in restoration of the MMR capacity in MMR-deficient cell lines. Our results suggest that microsatellite instability in sporadic colorectal cancer often results from epigenetic inactivation of hMLH1 in association with DNA methylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant DNA methylation is a common phenomenon in human cancer, but its patterns, causes, and consequences are poorly defined. Promoter methylation of the DNA mismatch repair gene MutL homologue (MLH1) has been implicated in the subset of colorectal cancers that shows microsatellite instability (MSI). The present analysis of four MspI/HpaII sites at the MLH1 promoter region in a series of 89 sporadic colorectal cancers revealed two main methylation patterns that closely correlated with the MSI status of the tumors. These sites were hypermethylated in tumor tissue relative to normal mucosa in most MSI(+) cases (31/51, 61%). By contrast, in the majority of MSI(−) cases (20/38, 53%) the same sites showed methylation in normal mucosa and hypomethylation in tumor tissue. Hypermethylation displayed a direct correlation with increasing age and proximal location in the bowel and was accompanied by immunohistochemically documented loss of MLH1 protein both in tumors and in normal tissue. Similar patterns of methylation were observed in the promoter region of the calcitonin gene that does not have a known functional role in tumorigenesis. We propose a model of carcinogenesis where different epigenetic phenotypes distinguish the colonic mucosa in individuals who develop MSI(+) and MSI(−) tumors. These phenotypes may underlie the different developmental pathways that are known to occur in these tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparative typing of matched tumor and blood DNAs at dinucleotide repeat (microsatellite) loci has revealed in tumor DNA the presence of alleles that are not observed in normal DNA. The occurrence of these additional alleles is possibly due to replication errors (RERs). Although this observation has led to the recognition of a subtype of colorectal cancer with a high incidence of RERs (caused by a deficiency in DNA mismatch repair), a thorough analysis of the RER frequency in a consecutive series of colorectal cancers had not been reported. It is shown here that the extensive typing of 88 colorectal tumors reveals a bimodal distribution for the frequency of RER at microsatellite loci. Within the major mode (75 tumors, RER− subtype), the probability that a locus exhibited instability did not differ significantly among loci and tumors, being 0.02. The subsequent development of a statistical test for an operational discrimination between the RER− and RER+ subtypes indicated that the probability of misclassification did not exceed 0.001 in this series. The frequency of K-ras mutation was found to be equivalent in the two subtypes. However, in the RER+ tumors, the p53 gene mutation was less frequently detected, the adenomatous polyposis coli (APC) mutation was rare, and the biallelic inactivation of either of these genes was not observed. Furthermore, the concomitant occurrence of APC and tumor growth factor β receptor type II gene alterations was found only once. These data suggest that the repertoires of genes that are frequently altered in RER+ and RER− tumors may be more different than previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A remarkable instability at simple repeated sequences characterizes gastrointestinal cancer of the microsatellite mutator phenotype (MMP). Mutations in the DNA mismatch repair gene family underlie the MMP, a landmark for hereditary nonpolyposis colorectal cancer. These tumors define a distinctive pathway for carcinogenesis because they display a particular spectrum of mutated cancer genes containing target repeats for mismatch repair deficiency. One such gene is BAX, a proapoptotic member of the Bcl-2 family of proteins, which plays a key role in programmed cell death. More than half of colon and gastric cancers of the MMP contain BAX frameshifts in a (G)8 mononucleotide tract. However, the functional significance of these mutations in tumor progression has not been established. Here we show that inactivation of the wild-type BAX allele by de novo frameshift mutations confers a strong advantage during tumor clonal evolution. Tumor subclones with only mutant alleles frequently appeared after inoculation into nude mice of single-cell clones of colon tumor cell lines with normal alleles. In contrast, no clones of BAX-expressing cells were found after inoculation of homozygous cell clones without wild-type BAX. These results support the interpretation that BAX inactivation contributes to tumor progression by providing a survival advantage. In this context, survival analyses show that BAX mutations are indicators of poor prognosis for both colon and gastric cancer of the MMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In human cells, hMLH1, hMLH3, hPMS1 and hPMS2 are four recognised and distinctive homologues of MutL, an essential component of the bacterial DNA mismatch repair (MMR) system. The hMLH1 protein forms three different heterodimers with one of the other MutL homologues. As a first step towards functional analysis of these molecules, we determined the interacting domains of each heterodimer and tried to understand their common features. Using a yeast two-hybrid assay, we show that these MutL homologues can form heterodimers by interacting with the same amino acid residues of hMLH1, residues 492–742. In contrast, three hMLH1 partners, hMLH3, hPMS1 and hPMS2 contain the 36 homologous amino acid residues that interact strongly with hMLH1. Contrary to the previous studies, these homologous residues reside at the N-terminal regions of three subdomains conserved in MutL homologues in many species. Interestingly, these residues in hPMS2 and hMLH3 may form coiled-coil structures as predicted by the MULTICOIL program. Furthermore, we show that there is competition for the interacting domain in hMLH1 among the three other MutL homologues. Therefore, the quantitative balance of these three MutL heterodimers may be important in their functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of hereditary nonpolyposis colon cancer (HNPCC) families harboring heterozygous germline mutations in the DNA mismatch repair genes hMSH2 or hMLH1 present with tumors generally two to three decades earlier than individuals with nonfamilial sporadic colon cancer. We searched for phenotypic features that might predispose heterozygous cells from HNPCC kindreds to malignant transformation. hMSH2+/− lymphoblastoid cell lines were found to be on average about 4-fold more tolerant than wild-type cells to killing by the methylating agent temozolomide, a phenotype that is invariably linked with impairment of the mismatch repair system. This finding was associated with an average 2-fold decrease of the steady-state level of hMSH2 protein in hMSH2+/− cell lines. In contrast, hMLH1+/− heterozygous cells were indistinguishable from normal controls in these assays. Thus, despite the fact that HNPCC families harboring mutations in hMSH2 or hMLH1 cannot be distinguished clinically, the early stages of the carcinogenic process in hMSH2 and hMLH1 mutation carriers may be different. Should hMSH2+/− colonocytes and lymphoblasts harbor a similar phenotype, the increased tolerance of the former to DNA-damaging agents present in the human colon may play a key role in the initiation of the carcinogenic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Escherichia coli dnaQ gene encodes the proofreading 3' exonuclease (epsilon subunit) of DNA polymerase III holoenzyme and is a critical determinant of chromosomal replication fidelity. We constructed by site-specific mutagenesis a mutant, dnaQ926, by changing two conserved amino acid residues (Asp-12-->Ala and Glu-14-->Ala) in the Exo I motif, which, by analogy to other proofreading exonucleases, is essential for the catalytic activity. When residing on a plasmid, dnaQ926 confers a strong, dominant mutator phenotype, suggesting that the protein, although deficient in exonuclease activity, still binds to the polymerase subunit (alpha subunit or dnaE gene product). When dnaQ926 was transferred to the chromosome, replacing the wild-type gene, the cells became inviable. However, viable dnaQ926 strains could be obtained if they contained one of the dnaE alleles previously characterized in our laboratory as antimutator alleles or if it carried a multicopy plasmid containing the E. coli mutL+ gene. These results suggest that loss of proofreading exonuclease activity in dnaQ926 is lethal due to excessive error rates (error catastrophe). Error catastrophe results from both the loss of proofreading and the subsequent saturation of DNA mismatch repair. The probability of lethality by excessive mutation is supported by calculations estimating the number of inactivating mutations in essential genes per chromosome replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim-Colorectal cancer has been described in association with hyperplastic polyposis but the mechanism underlying this observation is unknown. The aim of this study was to characterise foci of dysplasia developing in the polyps of subjects with hyperplastic polyposis on the basis of DNA microsatellite status and expression of the DNA mismatch repair proteins hMLH1, hMSH2, and hMSH6. Materials and methods-The material was derived from four patients with hyperplastic polyposis and between one and six synchronous colorectal cancers. Normal (four), hyperplastic (13), dysplastic (13), and malignant (11) samples were microdissected and a PCR based approach was used to identify mutations at 10 microsatellite loci, TGF beta IIR, IGF2R, BAX, MSH3, and MSH6. Microsatellite instability-high (MSI-H) was diagnosed when 40% or more of the microsatellite loci showed mutational bandshifts. Serial sections were stained for hMLH1, hMSH2, and hMSH6. Result-DNA microsatellite instability was found in 1/13 (8%) hyperplastic samples, in 7/13 (54%) dysplastic foci, and in 8/11 (73%) cancers. None of the MSI-low (MSI-L) samples (one hyperplastic, three dysplastic, two cancers) showed loss of hMLH1 expression. All four MSI-H dysplastic foci and six MSI-H cancers showed loss of hMLH1 expression. Loss of hMLH1 in MSI-H but not in MSI-L lesions showing dysplasia or cancer was significant (p< 0.001, Fisher's exact test). Loss of hMSH6 occurred in one MSI-H cancer and one MSS focus of dysplasia which also showed loss of hMLH1 staining. Conclusion-Neoplastic changes in hyperplastic polyposis may occur within a hyperplastic polyp. Neoplasia may be driven by DNA instability that is present to a low (MSI-L) or high (MSI-H) degree. MSI-H but not MSI-L dysplastic foci are associated with loss of hMLH1 expression. At least two mutator pathways drive neoplasia in hyperplastic polyposis. The role of the hyperplastic polyp in the histogenesis of sporadic DNA microsatellite unstable colorectal cancer should be examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.