987 resultados para DISSOLVED ORGANIC-MATTER
Resumo:
Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.
Resumo:
Dissolved organic matter (DOM) was extracted with solid phase extraction (SPE) from 137 water samples from different climate zones and different depths along an Eastern Atlantic Ocean transect. The extracts were analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI). D14C analyses were performed on subsamples of the SPE-DOM. In addition, the amount of dissolved organic carbon was determined for all water and SPE-DOM samples as well as the yield of amino sugars for selected samples. Linear correlations were observed between the magnitudes of 43% of the FT-ICR mass peaks and the extract D14C values. Decreasing SPE-DOM D14C values went along with a shift in the molecular composition to higher average masses (m/z) and lower hydrogen/carbon (H/C) ratios. The correlation was used to model the SPE-DOM D14C distribution for all 137 samples. Based on single mass peaks a degradation index was developed to compare the degradation state of marine SPE-DOM samples analyzed with FT-ICR MS. A correlation between D14C, degradation index, DOC values and amino sugar yield supports that SPE-DOM analyzed with FT-ICR MS reflects trends of bulk DOM. A relative mass peak magnitude ratio was used to compare aged SPE-DOM and fresh SPE-DOM regarding single mass peaks. The magnitude ratios show a continuum of different reactivities for the single compounds. Only few of the compounds present in the FT-ICR mass spectra are expected to be highly degraded in the oldest water masses of the Pacific Ocean. All other compounds should persist partly thermohaline circulation. Prokaryotic (bacterial) production, transformation and accumulation of this very stable DOM occurs probably primarily in the upper ocean. This DOM is an important contribution to very old DOM, showing that production and degradation are dynamic processes.