998 resultados para DISPOSABLE GOLD ELECTRODES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanostructures have been much sought after for cold-cathode field emission applications. Herein a printing technique is reported to controllably nanostructure chemical vapor deposited graphene into vertically standing fins. The method allows for the creation of regular arrays of bilayer graphene fins, with sharp ridges that, when printed onto gold electrodes, afford a new type of field emission electron source geometry. The approach affords tunable morphologies and excellent long term and cyclic stabilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A one-compartment glucose/O-2. biofuel cell based on an electrostatic layer-by-layer (LbL) technique on three-dimensional ordered macroporous (3DOM) gold electrode was described. A 3DOM gold electrode was synthesized electrochemically by an inverted colloidal crystal template technique. Then the macroporous gold electrodes were functionalized with Au nanoparticles (AuNPs) and enzyme, glucose dehydrogenase (GDH) or laccase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amyloid beta peptide plays a critical role in the pathogenesis of Alzheimer's disease (AD). Metal ions are highly enriched in cerebral amyloid deposits in AD and are proposed to be able to mediate A beta conformation. Therefore, a rapid, low-cost, and sensitive detection of metal-induced A beta aggregation and their relation to AD is clearly needed for the clinical diagnosis and treatment. In this report, we study metal-induced A beta aggregation by a rapid, label-free electrochemical method and monitor both the aggregation kinetics and the morphology in the absence or presence of Zn (II) and Cu (II).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Triplex helical formation has been the focus of considerable interest because of possible applications in developing new molecular biology tools as well as therapeutic agents and the possible relevance of H-DNA structures in biology system. We report here that a small-molecule anticancer agent, coralyne, has binding preference to the less stable protonated triplex d(C+-T)(6):d(A-G)(6).d(C-T)(6) over duplex d(A-G)(6).d(C-T)(6) and shows different spectral and electrochemical characteristics when binding to triplex and duplex DNA, indicating that electrochemical technique can detect the less stable protonated triplex formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is developed to estimate the coverage of an electropolymerizable aniline-analogue monolayer (mixture of 2- and 3-aminophenols, 2/3-ATP) by measuring the charge capacitance of the electrode (theta = 81%). The technique of filling the uncovered area (defect sites) of the aniline-analogue monolayer with alkanethiols with long alkane chains (1-decanethiol, 1-DT) has been used to determine the coverage. The dielectric constant (permittivity) of the PANI-analogue monolayer was determined to 8.4. Adsorption kinetics of 1-DT was also studied, and the value of the rate constant of the secondary adsorption was measured to 0.9 mol(-1) dm(3) s(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue 0, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 muM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoluminescent multilayers were fabricated by layer-by-layer deposition between europium-substituted heteropolytungstate K-13 [Eu(SiW11O39)(2)].28H(2)O (denoted ESW) and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) (denoted as QPVP-Os) on glassy carbon and quartz substrates. The resulting photoluminescent organic-inorganic hybrid multilayers were characterized by electrochemical impedance spectroscopy, UV-Vis absorption spectrometry, cyclic voltammetry and photoluminescence spectra. Electrochemical impedance spectroscopy, UV-Vis absorption spectrometry and cyclic voltammetry results demonstrated that the multilayers were regular growth each layer adsorption. The photoluminescent properties of the films at room temperature were investigated to show the characteristic Eu3+ emission pattern of D-5(0) --> (7) F-j.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several factors can influence charge transport (CT)-mediated DNA, such as sequence, distance, base stacking, base pair mismatch, conformation, tether length, etc. However, the DNA context effect or how flanking sequences influence redox active drugs in the DNA CT reaction and later in DNA enzymatic repair and synthesis is still not well understood. The set of seven DNA molecules in this study have been characterized well for the study of flanking sequence effects. These DNA duplexes are formed from self-complementary strands and contain the common central four-base sequence 5'-A-G-C-T-3', flanked on both sides by either (AT)(n) or (AA)(n) (n = 2, 3, or 4) or AA(AT)(2). UV-vis, fluorescence, UV melting, circular dichroism, and cyclic voltammetry experiments were used to study the flanking sequence effect on CT-mediated DNA by using daunomycin or adriamycin cross-linked with these seven DNA molecules. Our results showed that charge transport was related to the flanking sequence, DNA melting free energy, and ionic strength. For (AA)(n) or (AT)(n) species of the same length, (AA)(n) series were more stable and more efficient CT was observed through the (AA)(n) series. The same trend was observed for (AA)(n) and (AT)(n) series at different ionic strengths, further supporting the idea that flanking sequence can result in different base stacking and modulate charge transport through these seven DNA molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fully sulfonated polyaniline nano-particles, nano-fibrils and nano-networks have been achieved for the first time by electrochemical homopolymerization of orthanilic acid using a three-step electrochemical deposition procedure in a mixed solvent of acetonitrile (ACN) and water. The diameter of the uniform nano-particles is about 60nm, and the nano-fibrils can be organized in two-dimensional (21)) or three-dimensional (313) non-periodic networks with good electrical contact. Average distance between contacts is about 850 and 600 nm for a 2D and 3D system, respectively. The details of the poly(orthanilic acid) (POA) nano-structure were examined with a field emission scanning electron microscope (SEM). The structure and properties of POA were characterized with FTIR, UV-vis and electrochemical methods. The 3D POA nano-networks coated platinum electrode gave a direct electrochemical behavior of horse heart cytochrome c (Cyt c) immobilized on this electrode surface, a pair of well-defined redox waves with formal potential (E-ol) of -0.032 V (versus Ag/AgCl) was achieved. The interaction between Cyt c and POA makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods were used to investigate the interaction of Cyt c with POA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable electroactive film of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was assembled on indium oxide glass (ITO) successfully, and the cytochrome c was immobilized on the matrix by the electrostatic interactions. The adsorbed cytochrome c showed a good electrochemical activity with a pair of well-defined redox waves in pH 6.2 phosphate buffer solution, and the adsorbed protein showed more faster electron transfer rate (12.9 s(-1)) on the net-works matrix than those of on inorganic porous or even nano-materials reported recently. The immobilized cytochrome c exhibited a good electrocatalytic activity and amperometric response (2 s) for the reduction of hydrogen peroxide (H2O2). The detection limit for H2O2 was 1.5 mu M, and the linear range was from 3 mu M to 1 mM. Poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was proved to be a good matrix for protein immobilization and biosensor preparation.