959 resultados para DIMENSIONAL MODEL


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The CopA copper ATPase of Enterococcus hirae belongs to the family of heavy metal pumping CPx-type ATPases and shares 43% sequence similarity with the human Menkes and Wilson copper ATPases. Due to a lack of suitable protein crystals, only partial three-dimensional structures have so far been obtained for this family of ion pumps. We present a structural model of CopA derived by combining topological information obtained by intramolecular cross-linking with molecular modeling. Purified CopA was cross-linked with different bivalent reagents, followed by tryptic digestion and identification of cross-linked peptides by mass spectrometry. The structural proximity of tryptic fragments provided information about the structural arrangement of the hydrophilic protein domains, which was integrated into a three-dimensional model of CopA. Comparative modeling of CopA was guided by the sequence similarity to the calcium ATPase of the sarcoplasmic reticulum, Serca1, for which detailed structures are available. In addition, known partial structures of CPx-ATPase homologous to CopA were used as modeling templates. A docking approach was used to predict the orientation of the heavy metal binding domain of CopA relative to the core structure, which was verified by distance constraints derived from cross-links. The overall structural model of CopA resembles the Serca1 structure, but reveals distinctive features of CPx-type ATPases. A prominent feature is the positioning of the heavy metal binding domain. It features an orientation of the Cu binding ligands which is appropriate for the interaction with Cu-loaded metallochaperones in solution. Moreover, a novel model of the architecture of the intramembranous Cu binding sites could be derived.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE    Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS    Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS    A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS    A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A three-dimensional model has been proposed that uses Monte Carlo and fast Fourier transform convolution techniques to calculate the dose distribution from a fast neutron beam. This method transports scattered neutrons and photons in the forward, lateral, and backward directions and protons, electrons, and positrons in the forward and lateral directions by convolving energy spread kernels with initial interaction available energy distributions. The primary neutron and photon spectrums have been derived from narrow beam attenuation measurements. The positions and strengths of the effective primary neutron, scattered neutron, and photon sources have been derived from dual ion chamber measurements. The size of the effective primary neutron source has been measured using a copper activation technique. Heterogeneous tissue calculations require a weighted sum of two convolutions for each component since the kernels must be invariant for FFT convolution. Comparisons between calculations and measurements were performed for several water and heterogeneous phantom geometries. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose In this study, we show the use of three-dimensional printing models for preoperative planning of surgery for patients with complex aortic arch anomalies. Description A 70-year-old man with an extensively arteriosclerotic aneurysm reaching from the ascending aorta to the descending aorta was referred to our center for complete aortic arch replacement. We visualized and reconstructed computed tomography data of the patient and fabricated a flexible three-dimensional model of the aortic arch including the aneurysm. Evaluation This model was very helpful for the preoperative decision making and planning of the frozen elephant trunk procedure owing to the exact and lifelike illustration of the native aortic arch. Conclusions Three-dimensional models are helpful in preoperative planning and postoperative evaluation of frozen elephant trunk procedures in patients with complex aortic anatomy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is concerned with the low dimensional structure of optimal streaks in the Blasius boundary layer. Optimal streaks are well known to exhibit an approximate self-similarity, namely the streamwise velocity re-scaled with their maximum remains almost independent of both the spanwise wavenumber and the streamwise coordinate. However, the reason of this self-similar behavior is still unexplained as well as unexploited. After revisiting the structure of the streaks near the leading edge singularity, two additional approximately self-similar relations involving the velocity components and their wall normal derivatives are identified. Based on these properties, we derive a low dimensional model with two degrees of freedom. The comparison with the results obtained from the linearized boundary layer equations shows that this model is consistent and provide good approximations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the common failure modes of reinforced concrete (RC) beams strengthened in flexure with a bonded fibre-reinforced polymer (FRP) is intermediate crack (IC) debonding, which is originated at a critical section in the vicinity of flexural cracks and propagates to a plate end. Despite considerable research over the last years, few reliable and simplified IC debonding strength models have been developed. This paper firstly presents a one-dimensional model based on the discrete crack approach for concrete and the spectral element method for the numerical simulation of the IC debonding process. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Material properties of soft fibrous tissues are highly conditioned by the hierarchical structure of this kind of composites. Collagen based tissues present, at decreasing length scales, a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. Understanding the mechanical behaviour at nano-scale level is critical to accurately incorporate this structural information in phenomenological damage models. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale. A Hodge–Petruska two-dimensional model has been used to describe the fibrils as staggered arrays of tropocollagen molecules. After a mechanical characterisation of each of the fibril components, two fibril failures modes have been defined related with two planes of weakness. A phenomenological continuous damage model with regularised softening was presented along with meso-structurally based definitions for its material parameters. Finally, numerical analysis at fibril, fibre and tissue levels are presented to show the capabilities of the model

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The M2 protein from influenza A virus forms proton-selective channels that are essential to viral function and are the target of the drug amantadine. Cys scanning was used to generate a series of mutants with successive substitutions in the transmembrane segment of the protein, and the mutants were expressed in Xenopus laevis oocytes. The effect of the mutations on reversal potential, ion currents, and amantadine resistance were measured. Fourier analysis revealed a periodicity consistent with a four-stranded coiled coil or helical bundle. A three-dimensional model of this structure suggests a possible mechanism for the proton selectivity of the M2 channel of influenza virus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We apply a three-dimensional approach to describe a new parametrization of the L-operators for the two-dimensional Bazhanov-Stroganov (BS) integrable spin model related to the chiral Potts model. This parametrization is based on the solution of the associated classical discrete integrable system. Using a three-dimensional vertex satisfying a modified tetrahedron equation, we construct an operator which generalizes the BS quantum intertwining matrix S. This operator describes the isospectral deformations of the integrable BS model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A specific modified constitutive equation for a third-grade fluid is proposed so that the model be suitable for applications where shear-thinning or shear-thickening may occur. For that, we use the Cosserat theory approach reducing the exact three-dimensional equations to a system depending only on time and on a single spatial variable. This one-dimensional system is obtained by integrating the linear momentum equation over the cross-section of the tube, taking a velocity field approximation provided by the Cosserat theory. From this reduced system, we obtain the unsteady equations for the wall shear stress and mean pressure gradient depending on the volume flow rate, Womersley number, viscoelastic coefficient and flow index over a finite section of the tube geometry with constant circular cross-section.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival time in the general d-dimensional case. We then consider a simplified one-dimensional model (where transition probabilities and obstacles are independent and the RWRE only moves to neighbour sites), and obtain finer results for the tail of the survival time. In addition, we study also the ""mixed"" probability measures (quenched with respect to the obstacles and annealed with respect to the transition probabilities and vice-versa) and give results for tails of the survival time with respect to these probability measures. Further, we apply the same methods to obtain bounds for the tails of hitting times of Branching Random Walks in Random Environment (BRWRE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of a combined experimental program and numerical modeling program to evaluate the behavior of ungrouted hollow concrete blocks prisms under uniaxial compression are addressed. In the numerical program, three distinct approaches have been considered using a continuum model with a smeared approach, namely plane-stress, plane-strain and three-dimensional conditions. The response of the numerical simulations is compared with experimental data of masonry prisms using concrete blocks specifically designed for this purpose. The elastic and inelastic parameters were acquired from laboratory tests on concrete and mortar samples that constitute the blocks and the bed joint of the prisms. The results from the numerical simulations are discussed with respect to the ability to reproduce the global response of the experimental tests, and with respect to the failure behavior obtained. Good agreement between experimental and numerical results was found for the peak load and for the failure mode using the three-dimensional model, on four different sets of block/mortar types. Less good agreement was found for plain stress and plain strain models.