994 resultados para DIFFUSE MOLECULAR GAS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructure of a carbon molecular sieve membrane (CMSM) is characterized using adsorption equilibrium information. The pore size distributions of the CMSM derived from N-2 and CH4 adsorption isotherm are found to be consistent with each other and in agreement with the results of gas permeation experiments as well as the general characteristics of such molecular sieve materials. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dual resistance model with distribution of either barrier or pore diffusional activation energy is proposed in this work for gas transport in carbon molecular sieve (CMS) micropores. This is a novel approach in which the equilibrium is homogeneous, but the kinetics is heterogeneous. The model seems to provide a possible explanation for the concentration dependence of the thermodynamically corrected barrier and pore diffusion coefficients observed in previous studies from this laboratory on gas diffusion in CMS.(1.2) The energy distribution is assumed to follow the gamma distribution function. It is shown that the energy distribution model can fully capture the behavior described by the empirical model established in earlier studies to account for the concentration dependence of thermodynamically corrected barrier and pore diffusion coefficients. A methodology is proposed for extracting energy distribution parameters, and it is further shown that the extracted energy distribution parameters can effectively predict integral uptake and column breakthrough profiles over a wide range of operating pressures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains partially unknown. The analysis of the B-cell receptor of the malignant cells could contribute to a better understanding of the DLBCL biology. We studied the molecular features of the immunoglobulin heavy chain (IGH) rearrangements in 165 patients diagnosed with DLBCL not otherwise specified. Clonal IGH rearrangements were amplified according to the BIOMED-2 protocol and PCR products were sequenced directly. We also analyzed the criteria for stereotyped patterns in all complete IGHV-IGHD-IGHJ (V-D-J) sequences. Complete V-D-J rearrangements were identified in 130 of 165 patients. Most cases (89%) were highly mutated, but 12 sequences were truly unmutated or minimally mutated. Three genes, IGHV4-34, IGHV3-23, and IGHV4-39, accounted for one third of the whole cohort, including an overrepresentation of IGHV4-34 (15.5% overall). Interestingly, all IGHV4-34 rearrangements and all unmutated sequences belonged to the nongerminal center B-cell-like (non-GCB) subtype. Overall, we found three cases following the current criteria for stereotyped heavy chain VH CDR3 sequences, two of them belonging to subsets previously described in CLL. IGHV gene repertoire is remarkably biased, implying an antigen-driven origin in DLBCL. The particular features in the sequence of the immunoglobulins suggest the existence of particular subgroups within the non-GCB subtype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser-induced room temperature luminescence of air-equilibrated benzophenone/O-propylated p-tert-butylcalix[ 4] arene solid powdered samples revealed the existence of a novel emission, in contrast with benzophenone/p-tertbutylcalix[ 4] arene complexes, where only benzophenone emits. This novel emission was identified as phosphorescence of 1-phenyl-1,2-propanedione, which is formed as the result of an hydrogen atom abstraction reaction of the triplet excited benzophenone from the propoxy substituents of the calixarene. Room temperature phosphorescence was obtained in air-equilibrated samples in all propylated hosts. The decay times of the benzophenone emission vary greatly with the degree of propylation, the shortest lifetimes being obtained in the tri- and tetrapropylated calixarenes. Triplet - triplet absorption of benzophenone was detected in all cases, and is the predominant absorption in the p-tert-butylcalix[ 4] arene case, where an endo-calix complex is formed. Benzophenone ketyl radical formation occurs with the O-propylated p-tert-butylcalix[ 4] arenes hosts, suggesting a different type of host/guest molecular arrangement. Diffuse reflectance laser. ash photolysis and gas chromatography - mass spectrometry techniques provided complementary information, the former about transient species and the latter regarding the final products formed after light absorption. Product analysis and identification clearly show that the two main degradation photoproducts following laser excitation in the propylated substrates are 1-phenyl-1,2- propanedione and 2- hydroxybenzophenone, although several other minor photodegradation products were identified. A detailed mechanistic analysis is proposed. While the solution photochemistry of benzophenone is dominated by the hydrogen abstraction reaction from suitable hydrogen donors, in these solid powdered samples, the alpha-cleavage reaction also plays an important role. This finding occurs even with one single laser pulse which lasts only a few nanoseconds, and is apparently related to the fact that scattered radiation exists, due to multiple internal reflections possibly trapping light within non-absorbing microcrystals in the sample, and is detected until at least 20 mus after the laser pulse. This could explain how photoproducts thus formed could also be excited with only one laser pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical lambda-line. The high density liquid phase and the fluid phases are separated by a second critical tau-line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong transition when the critical lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the critical tau-line is crossed by decreasing the temperature at a constant chemical potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.