982 resultados para DC-Boost converter
Resumo:
Työssä esiteltävä laite on osa DC-AC hakkuria, jolla muodostetaan 750 V tasajännitteestä yksivaiheista (230 VRMS, 50 Hz) galvaanisesti erotettua verkkojännitettä. Tasajännite muunnetaan resonanssikonvertterilla korkeataajuiseksi vaihtojännitteeksi, joka johdetaan erotusmuuntajaan. Galvaanisen erotuksen jälkeen korkeataajuisesta vaihtojännitteestä muodostetaan suoraan verkkotaajuista vaihtojännitettä työssä esiteltävällä syklokonvertterilla. Suunnittelussa on pyritty minimoimaan häviöt mahdollisimman tarkkaan, jotta laite olisi kilpailukykyinen ei-galvaanisesti erottavien konverttereiden kanssa. Tämä on toteutettu käyttämällä mahdollisimman vähän komponentteja virran kulkureitillä sekä soveltamalla pehmeää kytkentää kaikissa tilanteissa. Lopuksi esitellään prototyyppi, jonka tarkoitus oli selvittää laitteen toiminta ja ongelmakohdat käytännössä.
Resumo:
Audiovahvistimet pohjautuvat yhä useammin D-luokan vahvistimiin niiden korkean hyötysuhteen takia. Tämä mahdollistaa pidemmän käyttöajan tai vastaavasti tehon lisäämisen kannettavissa audiolaitteissa. Kuitenkin, jotta akkukäyttöisestä audiolaitteesta saataisiin suurempaa tehoa, se vaatii yleensä korkeamman jännitteen kuin yksittäisen akun lähtöjännite on. Korkeampi jännite voidaan saavuttaa lisäämällä akkuja tai käyttämällä jännitettä nostavaa hakkuria. Hakkureissa syntyy kuitenkin kytkennästä johtuvaa värettä, mille D-luokan vahvistimet ovat alttiita. Tässä työssä tutkitaan boost- ja Čuk-hakkurin soveltuvuutta jännitteen nostoon akkukäyttöisessä audiolaitteessa. Käytännön sovelluksena toimii Porsas, josta halutaan saada 500 W teho. Työssä tutkitaan audiolaitteen asettamia ehtoja jännitelähteelle sekä hakkurien mitoittamista ehtojen mukaisesti. Työn tutkimustapana on kirjallisuustutkimus ja simulointi. Audiolaitteen jännitelähteeltä vaatima teho vaihtelee suuresti. Tämä tulee ottaa huomioon hakkurin komponenttien mitoituksessa. Lisäksi hakkurin lähtöjännitteen väre pyritään minimoimaan, koska sillä on suuri vaikutus vahvistimen toimintaan. Tulovirran väreen minimoinnilla on pidentävä vaikutus akun purkusykliin. Hakkurien laskennalliset komponenttien arvot sekä simuloinnit osoittavat, että hakkurit olisivat myös mahdollista tehdä käytännössä. Simulointien perusteella boost-hakkurin komponenttien arvot ovat pienempiä kuin Čuk-hakkurin. Boost-hakkurille löytyy myös valmiita ohjainpiirejä enemmän. Toisaalta Čuk-hakkurilla on mahdollista tehdä myös energiansäästötila. Hakkurien ohjaus ja jäähdytys vaatisivat jatkotutkimusta.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper shows the modeling and control of a single-phase full-bridge inverter with high-frequency transformer that may be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC converter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the P+Resonant current controller. A highfrequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. 1
Resumo:
Progetto di un circuito convertitore di potenza ottimizzato per essere alimentato da un antenna a RF in grado di estrarre potenza dalle bande a 900Mhz, 1750 MHz e 2450 MHz
Resumo:
In questo lavoro si vuole mostrare come sia possibile realizzare un circuito per energy harvesting totalmente autonomo, quindi senza l’ausilio di batterie, per sorgenti ultra-low voltage, in particolare per sorgenti termoelettriche sottoposte a piccoli gradienti di temperatura ed in grado di erogare tensioni di qualche decina di millivolt. Si esporrà come il circuito sia capace di avviarsi, autosostenersi ed alimentare un piccolo carico. Si è scelta una architettura basata su componenti discreti suddivisa in due macro blocchi: un circuito di startup implementato attraverso un’architettura a trasformatore piezoelettrico e un boost converter pilotato in catena aperta da un oscillatore ultra-low power.
Resumo:
Il presente lavoro di Tesi è stato incentrato sul dimensionamento di un sistema wireless epidermico abile a monitorare parametri fisiologici. La fase iniziale del lavoro è stata spesa per indagare le varie tipologie di sorgenti utili ad effettuare Energy Harvesting in contesti applicativi biomedicali, ed analizzare lo stato dell’arte in merito ai sistemi miniaturizzati, passivi, interfacciabili alla superficie corporea, configurabili nel settore di ricerca e-skin. Il corpo centrale del lavoro è stato quello di dimensionare un nuovo sistema wireless epidermico, energeticamente autonomo. Tale sistema è stato strutturato in tre catene costitutive. La prima di queste definita di Energy Harvesting e storage, presenta una cella solare, un boost converter –charger per il management della potenza ed una thin film battery come elemento di storage. La seconda catena è configurabile come quella di ricezione, in cui l’elemento cruciale è una Wake-Up Radio (WUR), la cui funzione è quella di abilitare il sistema di misura costituito da Microcontroller e sensore solo quando un Reader comunicherà la corretta sequenza di bit abilitanti alla lettura. La presente scelta ha mostrato vantaggi in termini di ridotti consumi. La terza ed ultima catena del sistema per mezzo di Microcontrollore e Transceiver consentirà di trasmettere via RF il dato letto al Reader. Una interfaccia grafica utente implementata in Matlab è stata ideata per la gestione dei dati. La sezione ultima della Tesi è stata impostata analizzando i possibili sviluppi futuri da seguire, in particolare integrare il sistema completo utilizzando un substrato flessibile così come il Kapton e dotare il sistema di sensoristica per misure biomediche specialistiche per esempio la misura del SpO2.
Resumo:
Switching mode power supplies (SMPS) are subject to low power factor and high harmonic distortions. Active power-factor correction (APFC) is a technique to improve the power factor and to reduce the harmonic distortion of SMPSs. However, this technique results in double frequency output voltage variation which can be reduced by using a large output capacitance. Using large capacitors increases the cost and size of the converter. Furthermore, the capacitors are subject to frequent failures mainly caused by evaporation of the electrolytic solution which reduce the converter reliability. This thesis presents an optimal control method for the input current of a boost converter to reduce the size of the output capacitor. The optimum current waveform as a function of weighing factor is found by using the Euler Lagrange equation. A set of simulations are performed to determine the ideal weighing which gives the lowest possible output voltage variation as the converter still meets the IEC-61000-3-2 class-A harmonics requirements with a power factor of 0.8 or higher. The proposed method is verified by the experimental work. A boost converter is designed and it is run for different power levels, 100 W, 200 W and 400 W. The desired output voltage ripple is 10 V peak to peak for the output voltage of 200 Vdc. This ripple value corresponds to a ± 2.5% output voltage ripple. The experimental and the simulation results are found to be quite matching. A significant reduction in capacitor size, as high as 50%, is accomplished by using the proposed method.
Resumo:
This paper presents a microinverter to be integrated into a solar module. The proposed solution combines a forward converter and a constant off-time boundary mode control, providing MPPT capability and unity power factor in a single-stage converter. The transformer structure of the power stage remains as in the classical DC-DC forward converter. Transformer primary windings are utilized for power transfer or demagnetization depending on the grid semi-cycle. Furthermore, bidirectional switches are used on the secondary side allowing direct connection of the inverter to the grid. Design considerations for the proposed solution are provided, regarding the inductance value, transformer turns ratio and frequency variation during a line semi-cycle. The decoupling of the twice the line frequency power pulsation is also discussed, as well as the maximum power point tracking (MPPT) capability. Simulation and experimental results for a 100W prototype are enclosed
Resumo:
In the last years, RF power amplifiers are taking advantage of the switched dc-dc converters to use them in several architectures that may improve the efficiency of the amplifier, keeping a good linearity. The use of linearization techniques such as Envelope Elimination and Restoration(EER) and Envelope Tracking (ET) requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier but theoretically the efficiency can be much higher than using the classical amplifiers belonging to classes A, B or AB. The purpose of this paper is to analyze the state of the art of the power converters used as envelope amplifiers in this application. The power topologies will be explored and several important parameters such as efficiency, bandwidth will be discussed.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
The voltage source inverter (VSI) and current voltage source inverter (CSI) are widely used in industrial application. But the traditional VSIs and CSIs have one common problem: can’t boost or buck the voltage come from battery, which make them impossible to be used alone in Hybrid Electric Vehicle (HEV/EV) motor drive application, other issue is the traditional inverter need to add the dead-band time into the control sequence, but it will cause the output waveform distortion. This report presents an impedance source (Z-source network) topology to overcome these problems, it can use one stage instead of two stages (VSI or CSI + boost converter) to buck/boost the voltage come from battery in inverter system. Therefore, the Z-source topology hardware design can reduce switching element, entire system size and weight, minimize the system cost and increase the system efficiency. Also, a modified space vector pulse-width modulation (SVPWM) control method has been selected with the Z-source network together to achieve the best efficiency and lower total harmonic distortion (THD) at different modulation indexes. Finally, the Z-source inverter controlling will modulate under two control sequences: sinusoidal pulse width modulation (SPWM) and SVPWM, and their output voltage, ripple and THD will be compared.