981 resultados para DC sputtering deposition
Resumo:
Titanium-carbon (Ti-C) thin films of different compositions were prepared by a combination of pulsed DC (for Ti target) and normal DC (for graphite target) magnetron co-sputtering on oxidized silicon and fused quartz substrates. At 33.7 at.% of C content, pure hcp Ti transforms into fcc-TiC with a preferential orientation of (2 2 0) along with (1 1 1) and (2 0 0). A clear transformation in the preferential orientation from (2 2 0) to (1 1 1) has been observed when the C content was increased to 56 at.%. At 62.5 at.% of C, TiC precipitates in an amorphous carbon matrix whereas further increase in C leads to X-ray amorphous films. The cross-sectional scanning electron microscope images reveal that the films with low carbon content consists of columnar grains, whereas, randomly oriented grains are in an amorphous carbon matrix at higher carbon content. A dramatic variation was observed in the mechanical properties such as hardness, H, from 30 to 1 GPa and in modulus, E, from 255 to 25 GPa with varying carbon content in the films. Resistance to plastic deformation parameter was observed as 0.417 for films containing 62.5 at.% of C. Nanoscratch test reveals that the films are highly scratch resistant with a coefficient of friction ranging from 0.15 to 0.04. (C) 2012 Elsevier B.V. All rights reserved.
Composition, structure and electrical properties of DC reactive magnetron sputtered Al2O3 thin films
Resumo:
Thin films of alumina (Al2O3) were deposited over Si < 1 0 0 > substrates at room temperature at an oxygen gas pressure of 0.03 Pa and sputtering power of 60 W using DC reactive magnetron sputtering. The composition of the as-deposited film was analyzed by X-ray photoelectron spectroscopy and the O/Al atomic ratio was found to be 1.72. The films were then annealed in vacuum to 350, 550 and 750 degrees C and X-ray diffraction results revealed that both as-deposited and post deposition annealed films were amorphous. The surface morphology and topography of the films was studied using scanning electron microscopy and atomic force microscopy, respectively. A progressive decrease in the root mean square (RMS) roughness of the films from 1.53 nm to 0.7 nm was observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on p-type Si < 1 0 0 > substrate to study the effect of temperature and frequency on the dielectric property of the films and the results are discussed.
Resumo:
Titanium dioxide (TiO2) thin films are deposited on unheated p-Si (100) and quartz substrates by employing DC reactive magnetron sputtering technique. The effect of post-deposition annealing in air at temperatures in the range 673-973 K on the structural, electrical, and dielectric properties of the films was investigated. The chemical composition of the TiO2 films was analyzed with X-ray photoelectron spectroscopy. The surface morphology of the films was studied by atomic force microscope. The optical band gap of the as-deposited film was 3.50 eV, and it increased to 3.55 eV with the increase in annealing temperature to 773 K. The films annealed at higher temperature of 973 K showed the optical band gap of 3.43 eV. Thin film capacitors were fabricated with the MOS configuration of Al/TiO2/p-Si. The leakage current density of the as-deposited films was 1.2 x 10(-6) A/cm(2), and it decreased to 5.9 x 10(-9) A/cm(2) with the increase in annealing temperature to 973 K. These films showed high dielectric constant value of 36. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 degrees C in the as-deposited condition as well as in the postannealed (at 600 degrees C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni3Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200-250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (NixTiySi) at the film-substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region similar to 250-300 nm just above the film substrate interface. (C) 2013 American Vacuum Society.
Resumo:
In the present investigation, Al2O3 thin films were deposited onto Si < 100 > substrates by DC reactive magnetron sputtering. The films were annealed in vacuum for one hour at 623, 823 and 1023 K. The composition of the films was quantitatively estimated using X-ray photoelectron spectroscopy (XPS) and the O/Al ratio was found be in the range 1.19 to 1.43. Grazing incidence X-ray diffraction (GIXRD) results revealed that the annealed films are amorphous in nature. Cross sectional transmission electron microscopy (X-TEM) analysis was carried out to study the microstructure and nature of the Al2O3-Si interface as a function of post-deposition annealing. TEM results revealed the presence of nanocrystalline gamma-Al2O3 in the annealed films and an amorphous interface layer was observed at the Al2O3 Si interface. The thickness of the amorphous interface layer was determined from the TEM analysis and the results are discussed.
Resumo:
Amorphous hydrogenated silicon (a-Si:H) is well-known material in the global semiconductor industry. The quality of the a-Si:H films is generally decided by silicon and hydrogen bonding configuration (Si-H-x, x=1,2) and hydrogen concentration (C-H). These quality aspects are correlated with the plasma parameters like ion density (N-i) and electron temperature (T-e) of DC, Pulsed DC (PDC) and RF plasmas during the sputter-deposition of a-Si:H thin films. It was found that the N-i and T-e play a major role in deciding Si-H-x bonding configuration and the C-H value in a-Si:H films. We observed a trend in the variation of Si-H and Si-H-2 bonding configurations, and C-H in the films deposited by DC, Pulsed DC and RF reactive sputtering techniques. Ion density and electron energy are higher in RF plasma followed by PDC and DC plasma. Electrons with two different energies were observed in all the plasmas. At a particular hydrogen partial pressure, RF deposited films have higher C-H followed by PDC and then DC deposited films. The maximum energy that can be acquired by the ions was found to be higher in RF plasma. Floating potential (V-f) is more negative in DC plasma, whereas, plasma potential (V-p) is found to be more positive in RF plasma. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
The majority of attempts to synthesize the theoretically predicted superhard phase β-C3N4 have been driven towards the use of techniques which maximize both the carbon sp3 levels and the amount of nitrogen incorporated within the film. However, as yet no attempt has been made to understand the mechanism behind the resultant chemical sputter process and its obvious effect upon film growth. In this work, however, the chemical sputtering process has been investigated through the use of an as-deposited tetrahedrally bonded amorphous carbon film with a high density nitrogen plasma produced using an rf-based electron cyclotron wave resonance source. The results obtained suggested the presence of two distinct ion energy dependent regimes. The first, below 100 eV, involves the chemical sputtering of carbon from the surface, whereas the second at ion energies in excess of 100 eV exhibits a drop in sputter rate associated with the subplantation of nitrogen within the carbon matrix. Furthermore, as the sample temperature is increased there is a concomitant decrease in sputter rate suggesting that the rate is controlled by the adsorption and desorption of additional precursor species rather than the thermal desorption of CN. A simple empirical model has been developed in order to elucidate some of the primary reactions involved in the sputter process. Through the incorporation of various previously determined experimental parameters including electron temperature, ion current density, and nitrogen partial pressure the results indicated that molecular nitrogen physisorbed at the ta-C surface was the dominant precursor involved in the chemical sputter process. However, as the physisorption enthalpy of molecular nitrogen is low this suggests that activation of this molecular species takes place only through ion impact at the surface. The obtained results therefore provide important information for the modeling and growth of high density carbon nitride. © 2001 American Institute of Physics.
Resumo:
The NiOx thin films were deposited by reactive dc-magnetron sputtering from a nickel metal target in Ar + O-2 with the relative O-2 content 5%. The as-deposited NiOx, thin films could represent a two-component system comprising crystalline NiO particles dispersed in an amorphous Ni2O3. Decomposition temperature of the as-deposited NiO, thin films was at about 263 degrees C. After annealed at 400 degrees C for 30 min in air, the surface morphology of the films became very rough due to the decomposition of the Ni2O3, leading to the changes of the optical properties of the NiO, thin films. The reflectivity of the films annealed at 400 degrees C was lower than that of the as-deposited one and the optical contrast was 52% at 405 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Si:SbOx films have been deposited by reactive dc-magnetron sputtering from a Sb target with Si chips attached in Ar + O-2 with the relative O-2 content 7%. The as-deposited films contained Sb metal, Sb2O3, SiO, Si2O3 and SiO2. The crystallization of Sb was responsible for the changes of optical properties of the films. The results of the blue laser recording test showed that the films had good writing sensitivity for blue laser beam (406.7 nm), and the recording marks were still clear even if the films were deposited in air 60 days, which demonstrated that doping silicon in SbOx films can improve the stability of SbOx films. High reflectivity contrast of about 36% was obtained at a writing power 6 mW and writing pulse width 300 ns. (c) 2007 Elsevier B.V. All rights reserved.