1000 resultados para D-arvo
Resumo:
PURPOSE. To assess whether there are any advantages of binocular over monocular vision under blur conditions. METHODS. We measured the effect of defocus, induced by positive lenses, on the pattern reversal Visual Evoked Potential (VEP) and on visual acuity (VA). Monocular (dominant eye) and binocular VEPs were recorded from thirteen volunteers (average age: 28±5 years, average spherical equivalent: -0.25±0.73 D) for defocus up to 2.00 D using positive powered lenses. VEPs were elicited using reversing 10 arcmin checks at a rate of 4 reversals/second. The stimulus subtended a circular field of 7 degrees with 100% contrast and mean luminance 30 cd/m2. VA was measured under the same conditions using ETDRS charts. All measurements were performed at 1m viewing distance with best spectacle sphero-cylindrical correction and natural pupils. RESULTS. With binocular stimulation, amplitudes and implicit times of the P100 component of the VEPs were greater and shorter, respectively, in all cases than for monocular stimulation. Mean binocular enhancement ratio in the P100 amplitude was 2.1 in-focus, increasing linearly with defocus to be 3.1 at +2.00 D defocus. Mean peak latency was 2.9 ms shorter in-focus with binocular than for monocular stimulation, with the difference increasing with defocus to 8.8 ms at +2.00 D. As for the VEP amplitude, VA was always better with binocular than with monocular vision, with the difference being greater for higher retinal blur. CONCLUSIONS. Both subjective and electrophysiological results show that binocular vision ameliorates the effect of defocus. The increased binocular facilitation observed with retinal blur may be due to the activation of a larger population of neurons at close-to-threshold detection under binocular stimulation.
Resumo:
This report provides an overview of findings of qualitative research comprising three case studies undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. These case studies (see Parts 2, 3 and 4 of this suite of reports) were undertaken to illustrate the nature of past R&D investments in Australia. This was done to complement: (i) the audit and analysis of past R&D investment undertaken by Thomas Barlow (2011); and (ii) the Construction 2030 roadmap being developed by Swinburne University of Technology and Professor Göran Roos from VTT Technical Research Centre of Finland. These documents will be the basis for the final phase of the present project - developing policy guidelines for future R&D investment in the Australian built environment. Refer also Parts 1, 2 and 3 for detail findings.
Resumo:
This report discusses findings of a case study into "CADD, BIM and IPD" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. This case study investigated the evolution that has taken place in the Queensland Department of Public Works Division of Project Services during the last 20 years from: the initial implementation of computer aided design and documentation(CADD); to the experimentation with building information modelling (BIM) from the mid 2000’s; embedding integrated practice (IP); to current steps towards integrated project delivery (IPD) with the integration of contractors in the design/delivery process. This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
This report discusses findings of a case study into "Road Construction Safety" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Queensland Department of Transport and Main Roads (QTMR) has taken a leadership role in developing a safer working environment for road construction workers. In the past decades, a range of initiatives have been introduced to contribute to improved performance in this area. Several initiatives have been undertaken by QTMR as part of their overarching commitment to safety. Three such initiatives form the basis for this case study investigation, in order to better illustrate the nature of R&D investment and its impact on day-to-day operations and the supply chain. These are the development and implementation of: (i) the Mechanical Traffic Aid: (ii) the Thermal Imaging Camera; and (iii) the Trailer-based CCTV (camera). This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
This report discusses findings of a case study into "Green Buildings" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Western Australian Government (WAG) has taken a leadership role for a number of decades in developing more environmentally responsive buildings. In the past decade, considerable initiatives have been introduced to contribute to: (i) greening the stock of government buildings; and (ii) providing leadership in the development of other non-residential buildings developed commercially. This role has been informed by global, national and internal initiatives and research in this area. This case study investigates: (i) the nature of this leadership; and (ii) the role of R&D policy development; and (iii) the dissemination and impact of outcomes in the broader industry. This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
Recently, some authors have considered a new diffusion model–space and time fractional Bloch-Torrey equation (ST-FBTE). Magin et al. (2008) have derived analytical solutions with fractional order dynamics in space (i.e., _ = 1, β an arbitrary real number, 1 < β ≤ 2) and time (i.e., 0 < α < 1, and β = 2), respectively. Yu et al. (2011) have derived an analytical solution and an effective implicit numerical method for solving ST-FBTEs, and also discussed the stability and convergence of the implicit numerical method. However, due to the computational overheads necessary to perform the simulations for nuclear magnetic resonance (NMR) in three dimensions, they present a study based on a two-dimensional example to confirm their theoretical analysis. Alternating direction implicit (ADI) schemes have been proposed for the numerical simulations of classic differential equations. The ADI schemes will reduce a multidimensional problem to a series of independent one-dimensional problems and are thus computationally efficient. In this paper, we consider the numerical solution of a ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. A fractional alternating direction implicit scheme (FADIS) for the ST-FBTE in 3-D is proposed. Stability and convergence properties of the FADIS are discussed. Finally, some numerical results for ST-FBTE are given.
Resumo:
This paper reports on a current case study of green building initiatives implemented by the Western Australian government in the past decade. The intent is to provide a qualitative understanding of past R&D investments in the Australian built environment. The case method was selected to illustrate three sector-based investments, one of which is reported on here. The conceptual framework underpinning interview design and data analysis uses dynamic capability, absorptive capacity and open innovation theories to better understand the organisational environment in which these initiatives were implemented. Data has been thematically coded to criteria identified from the literature to illustrate organisational characteristics which may have contributed to dissemination and impact. The results will be combined with two further case studies (construction safety and digital modelling), to inform this research. This industry supported project will conclude by developing policy guidelines for future R&D investment in the built environment.