983 resultados para Cytokine-mediated Osteoclastogenesis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes interferes with bone formation and impairs fracture healing, an important complication in humans and animal models. The aim of this study was to examine the impact of diabetes on mesenchymal stem cells (MSCs) during fracture repair.Fracture of the long bones was induced in a streptozotocin-induced type 1 diabetic mouse model with or without insulin or a specific TNF alpha inhibitor, pegsunercept. MSCs were detected with cluster designation-271 (also known as p75 neurotrophin receptor) or stem cell antigen-1 (Sca-1) antibodies in areas of new endochondral bone formation in the calluses. MSC apoptosis was measured by TUNEL assay and proliferation was measured by Ki67 antibody. In vitro apoptosis and proliferation were examined in C3H10T1/2 and human-bone-marrow-derived MSCs following transfection with FOXO1 small interfering (si)RNA.Diabetes significantly increased TNF alpha levels and reduced MSC numbers in new bone area. MSC numbers were restored to normal levels with insulin or pegsunercept treatment. Inhibition of TNF alpha significantly reduced MSC loss by increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established that TNF alpha alone was sufficient to induce apoptosis and inhibit proliferation of MSCs. Furthermore, silencing forkhead box protein O1 (FOXO1) prevented TNF alpha-induced MSC apoptosis and reduced proliferation by regulating apoptotic and cell cycle genes.Diabetes-enhanced TNF alpha significantly reduced MSC numbers in new bone areas during fracture healing. Mechanistically, diabetes-enhanced TNF alpha reduced MSC proliferation and increased MSC apoptosis. Reducing the activity of TNF alpha in vivo may help to preserve endogenous MSCs and maximise regenerative potential in diabetic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)derived leukotriene B4 (LTB4) in driving tissue inflammation and hypernociception in a murine model of gout. Methods. Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1 beta (IL-1 beta), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB4 activity, cytokine (IL-1 beta, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. Results. Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophildependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1 beta/MyD88-dependent manner. LTB4 was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1 beta production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB4 after MSU crystal injection, and LTB4 was relevant in the MSU crystalinduced maturation of IL-1 beta. Mechanistically, LTB4 drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. Conclusion. These results reveal the role of the NLRP3 inflammasome in mediating MSU crystalinduced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB4 in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problem We evaluated the influence of amniotic fluid (AF) on immune mediator production by mononuclear leukocytes. Method of study Thirty mid-gestation AFs were incubated with peripheral blood mononuclear cells (PBMCs) in the presence or absence of lipopolysaccharide (LPS). Supernatants were tested for interleukin (IL) -6, 10, 12, 23, tumor necrosis factor-alpha (TNF-alpha) and monocyte chemotactic protein (MCP)-1. Results Endogenous mediator production was minimal or non-detectable. AF stimulated endogenous MCP-1, IL-6 and TNF-alpha release. In the presence of LPS, production of MCP-1 and IL-10 by PBMCs was enhanced eightto ninefold by AF. Release of IL-6 and IL-23 was enhanced less than twofold by the addition of AF while TNF-alpha production was unchanged. AF-stimulated mediator production was similar irrespective of pregnancy outcome. Conclusion Selective AF stimulation of LPS-mediated MCP-1 and IL-10 release may be a mechanism to promote antibody production and the influx of phagocytic cells to engulf pathogens while downregulating the production of pro-inflammatory cytokines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. Sand fly saliva is known to enhance Leishmania spp. infection, while pre-exposure to saliva protects mice against parasitic infections. In this study, we investigated the initial inflammatory leucocyte composition induced by one or three inocula of salivary gland extract (SGE) from Lutzomyia longipalpis in the presence or absence of Leishmania braziliensis. Results We demonstrated that inoculating SGE once (SGE-1X) or three times (SGE-3X), which represented a co-inoculation or a pre-exposure to saliva, respectively, resulted in different cellular infiltrate profiles. Whereas SGE-1X led to the recruitment of all leucocytes subtypes including CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils, the immune cell profile in the SGE-3X group differed dramatically, as CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils were decreased and CD8+ T cells were increased. The SGE-1X group did not show differences in the ear lesion size; however, the SGE-1X group harbored a higher number of parasites. On the other hand, the SGE-3X group demonstrated a protective effect against parasitic disease, as the parasite burden was lower even in the earlier stages of the infection, a period in which the SGE-1X group presented with larger and more severe lesions. These effects were also reflected in the cytokine profiles of both groups. Whereas the SGE-1X group presented with a substantial increase in IL-10 production, the SGE-3X group showed an increase in IFN-γ production in the draining lymph nodes. Analysis of the inflammatory cell populations present within the ear lesions, the SGE-1X group showed an increase in CD4+FOXP3+ cells, whereas the CD4+FOXP3+ population was reduced in the SGE-3X group. Moreover, CD4+ T cells and CD8+ T cells producing IFN-γ were highly detected in the ears of the SGE-3X mice prior to infection. In addition, upon treatment of SGE-3X mice with anti-IFN-γ monoclonal antibody, we observed a decrease in the protective effect of SGE-3X against L. braziliensis infection. Conclusions These results indicate that different inocula of Lutzomyia longipalpis salivary gland extract can markedly modify the cellular immune response, which is reflected in the pattern of susceptibility or resistance to Leishmania braziliensis infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human airway epithelium is a pseudostratified heterogenous layer comprised of cili-ated, secretory, intermediate and basal cells. As the stem/progenitor population of the airway epi-thelium, airway basal cells differentiate into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. Transcriptome analysis of airway basal cells revealed high expression of vascular endothelial growth factor A (VEGFA), a gene not typically associated with the function of this cell type. Using cultures of primary human airway basal cells, we demonstrate that basal cells express all of the 3 major isoforms of VEGFA (121, 165 and 189) but lack functional expression of the classical VEGFA receptors VEGFR1 and VEGFR2. The VEGFA is actively secreted by basal cells and while it appears to have no direct autocrine function on basal cell growth and proliferation, it functions in a paracrine manner to activate MAPK signaling cascades in endothelium via VEGFR2 dependent signaling pathways. Using a cytokine- and serum-free co-culture system of primary human airway basal cells and human endothelial cells revealed that basal cell secreted VEGFA activated endothelium to ex-press mediators that, in turn, stimulate and support basal cell proliferation and growth. These data demonstrate novel VEGFA mediated cross-talk between airway basal cells and endothe-lium, the purpose of which is to modulate endothelial activation and in turn stimulate and sustain basal cell growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T helper (Th) 9 cells are an important subpopulation of the CD4+ T helper cells. Due to their ability to secrete Interleukin-(IL-)9, Th9 cells essentially contribute to the expulsion of parasitic helminths from the intestinal tract but they play also an immunopathological role in the course of asthma. Recently, a beneficial function of Th9 cells in anti-tumor immune responses was published. In a murine melanoma tumor model Th9 cells were shown to enhance the anti-melanoma immune response via the recruitment of CD8+ T cells, dendritic cells and mast cells. In contrast to Th9 effector cells regulatory T cells (Tregs) are able to control an immune response with the aid of different suppressive mechanisms. Based on their ability to suppress an immune response Tregs are believed to be beneficial in asthma by diminishing excessive allergic reactions. However, concerning cancer they can have a detrimental function because Tregs inhibit an effective anti-tumor immune reaction. Thus, the analysis of Th9 suppression by Tregs is of central importance concerning the development of therapeutic strategies for the treatment of cancer and allergic diseases and was therefore the main objective of this PhD thesis.rnIn general it could be demonstrated that the development of Th9 cells can be inhibited by Tregs in vitro. The production of the lineage-specific cytokine IL-9 by developing Th9 cells was completely suppressed at a Treg/Th9 ratio of 1:1 on the transcriptional (qRT-PCR) as well as on the translational level (ELISA). In contrast, the expression of IRF4 that was found to strongly promote Th9 development was not reduced in the presence of Tregs, suggesting that IRF4 requires additional transcription factors to induce the differentiation of Th9 cells. In order to identify such factors, which regulate Th9 development and therefore represent potential targets for Treg-mediated suppressive mechanisms, a transcriptome analysis using “next-generation sequencing” was performed. The expression of some genes which were found to be up- or downregulated in Th9 cells in the presence of Tregs was validated with qRT-PCR. Time limitations prevented a detailed functional analysis of these candidate genes. Nevertheless, the analysis of the suppressive mechanisms revealed that Tregs probably suppress Th9 cells via the increase of the intracellular cAMP concentration. In contrast, IL-9 production by differentiated Th9 cells was only marginally affected by Tregs in vitro and in vivo analysis (asthma, melanoma model). Hence, Tregs represent very effective inhibitors of Th9 development whereas they have only a minimal suppressive influence on differentiated Th9 cells.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcineurin-inhibitor refractory bronchiolitis obliterans (BO) represents the leading cause of late graft failure after lung transplantation. T helper (Th)2 and Th17 lymphocytes have been associated with BO development. Taking advantage of a fully allogeneic trachea transplantation model in mice, we addressed the pathogenicity of Th cells in obliterative airway disease (OAD) occurring in cyclosporine A (CsA)-treated recipients. We found that CsA prevented CD8+ T cell infiltration into the graft and downregulated the Th1 response but affected neither Th2 nor Th17 responses in vivo. In secondary mixed lymphocyte cultures, CsA dramatically decreased donor-specific IFN-γ production, enhanced IL-17 production and did not affect IL-13. As CD4+ depletion efficiently prevented OAD in CsA-treated recipients, we further explored the role of Th2 and Th17 immunity in vivo. Although IL-4 and IL-17 deficient untreated mice developed an OAD comparable to wild-type recipients, a single cytokine deficiency afforded significant protection in CsA-treated recipients. In conclusion, CsA treatment unbalances T helper alloreactivity and favors Th2 and Th17 as coexisting pathways mediating chronic rejection of heterotopic tracheal allografts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cannabinoid CB(2) receptor is known to modulate osteoclast function by poorly understood mechanisms. Here, we report that the natural biphenyl neolignan 4'-O-methylhonokiol (MH) is a CB(2) receptor-selective antiosteoclastogenic lead structure (K(i) < 50 nM). Intriguingly, MH triggers a simultaneous G(i) inverse agonist response and a strong CB(2) receptor-dependent increase in intracellular calcium. The most active inverse agonists from a library of MH derivatives inhibited osteoclastogenesis in RANK ligand-stimulated RAW264.7 cells and primary human macrophages. Moreover, these ligands potently inhibited the osteoclastogenic action of endocannabinoids. Our data show that CB(2) receptor-mediated cAMP formation, but not intracellular calcium, is crucially involved in the regulation of osteoclastogenesis, primarily by inhibiting macrophage chemotaxis and TNF-α expression. MH is an easily accessible CB(2) receptor-selective scaffold that exhibits a novel type of functional heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnosis of drug hypersensitivity relies on history, skin tests, in vitro tests and provocation tests. In vitro tests are of great interest, due to possible reduction of drug provocation tests. In this review we focus on best investigated in vitro techniques for the diagnosis of T cell-mediated drug hypersensitivity reactions. As drug hypersensitivity relies on different pathomechanisms and as a single diagnostic test usually does not cover all possible reactions, it is advisable to combine different tests to increase the overall sensitivity. Recently, proliferation-based assays have been supplemented by a panel of novel in vitro tests including analysis of cytotoxic potential of effector cells (granzyme B, granulysin, CD107a), evaluation of cytokine secretion (IL-2, IL-5, IL-13, and IFN-γ) and up-regulation of cell surface activation markers (CD69). We discuss the latest findings and readout systems to identify causative drugs by detecting functional and phenotypic markers of drug-reacting cells, and their ability to enable a more conclusive diagnosis of drug allergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-beta1 (TGF-beta1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-beta1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-beta1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equine insect bite hypersensitivity (IBH) is a seasonally recurrent, pruritic skin disorder caused by an IgE-mediated reaction to salivary proteins of biting flies, predominantly of the genus Culicoides. The aim of this study was to define T cell subsets and cytokine profile in the skin of IBH-affected Icelandic horses with particular focus on the balance between T helper (Th) 1, Th2 and T regulatory (Treg) cells. Distribution and number of CD4+, CD8+ and Forkhead box P3 (FoxP3)+ T cells were characterized by immunohistochemical staining in lesional and non-lesional skin of moderately and severely IBH-affected horses (n=14) and in the skin of healthy control horses (n=10). Using real-time quantitative reverse transcription-polymerase chain reaction, mRNA expression levels of Th2 cytokines (Interleukin (IL)-4, IL-5, IL-13), Th1 cytokines (Interferon-gamma), regulatory cytokines (Transforming Growth Factor beta1, IL-10) and the Treg transcription factor FoxP3 were measured in skin and blood samples. Furthermore, Culicoides nubeculosus specific serum IgE levels were assessed. Lesions of IBH-affected horses contained significantly higher numbers of CD4+ cells than skin of healthy control horses. Furthermore, the total number of T cells (CD4+ and CD8+) was significantly increased in lesional compared to non-lesional skin and there was a tendency (p=0.07) for higher numbers of CD4+ cells in lesional compared to non-lesional skin. While the number of FoxP3+ T cells did not differ significantly between the groups, the ratio of Foxp3 to CD4+ cells was significantly lower in lesions of severely IBH-affected horses than in moderately affected or control horses. Interestingly, differences in FoxP3 expression were more striking at the mRNA level. FoxP3 mRNA levels were significantly reduced in lesional skin, compared both to non-lesional and to healthy skin and were also significantly lower in non-lesional compared to healthy skin. Expression levels of IL-13, but not IL-4 or IL-5, were significantly elevated in lesional and non-lesional skin of IBH-affected horses. IL-10 levels were lower in lesional compared to non-lesional skin (p=0.06) and also lower (p=0.06) in the blood of IBH-affected than of healthy horses. No significant changes were observed regarding blood expression levels of Th1 and Th2 cytokines or FoxP3. Finally, IBH-affected horses had significantly higher Culicoides nubeculosus specific serum IgE levels than control horses. The presented data suggest that an imbalance between Th2 and Treg cells is a characteristic feature in IBH. Treatment strategies for IBH should thus aim at restoring the balance between Th2 and Treg cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides spp. IBH does not occur in Iceland where Culicoides are absent. However, following importation into continental Europe where Culicoides are present, >or=50% of Icelandic horses (1st generation) develop IBH but

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.