920 resultados para Cytochrome Reductases
Resumo:
A BALB/c cloned T cell line directed against beef apo cytochrome c was shown to exhibit the Lyt-1+2- cell surface phenotype. The fine specificity of antigen recognition exhibited by the T cell clone was assessed by using a variety of peptide preparations obtained from cytochrome c of different sources. The peptide segment recognized by this T cell clone, in conjunction with I-A region gene products, appeared similar to that bound by a monoclonal antibody specific for beef apo cytochrome c derived from the same strain of mice.
Resumo:
Identification of populations of Bulinus nasutus and B. globosus from East Africa is unreliable using characters of the shell. In this paper, a molecular method of identification is presented for each species based on DNA sequence variation within the mitochondrial cytochrome oxidase subunit I (COI) as detected by a novel multiplexed SNaPshotTM assay. In total, snails from 7 localities from coastal Kenya were typed using this assay and variation within shell morphology was compared to reference material from Zanzibar. Four locations were found to contain B. nasutus and 2 locations were found to contain B. globosus. A mixed population containing both B. nasutus and B. globosus was found at Kinango. Morphometric variation between samples was considerable and UPGMA cluster analysis failed to differentiate species. The multiplex SNaPshotTM assay is an important development for more precise methods of identification of B. africanus group snails. The assay could be further broadened for identification of other snail intermediate host species.
Resumo:
Cytochrome p450s (cyp450s) are a family of structurally related proteins, with diverse functions, including steroid synthesis and breakdown of toxins. This paper reports the full-length sequence of a novel cyp450 gene, the first to be isolated from the tropical freshwater snail Biomphalaria glabrata, an important intermediate host of Schistosoma mansoni. The nucleotide sequence is 2291 bp with a predicted amino acid sequence of 584aa. The sequence demonstrates conserved cyp450 structural motifs, but is sufficiently different from previously reported cyp450 sequences to be given a new classification, CYP320A1. Initially identified as down-regulated in partially resistant snails in response to S. mansoni infection, amplification of this gene using RT-PCR in both totally resistant or susceptible snail lines when exposed to infection, and all tissues examined, suggests ubiquitous expression. Characterization of the first cyp450 from B. glabrata is significant in understanding the evolution of these metabolically important proteins.
Resumo:
Partial cytochrome b DNA sequences for 62 Triatoma infestans were analyzed to determine the degree of genetic variation present in populations of this insect in the northwest region of Chuquisaca, Bolivia. A total of seven haplotypes were detected in the localities sampled. The phylogenetic relationship and population genetic structure of the haplotypes found in this region, indicate that there is greater variation in this relatively small region of Bolivia than what has been previously reported by studies using the same gene fragment, for more distant geographic areas of this country. In addition, a comparison of rural and peri-urban localities, indicate that there is no difference in the genetic variation of T. infestans between these two environments.
Resumo:
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.
Resumo:
Echinococcus granulosus, the etiologic agent of cystic echinococcosis (CE) in humans and other animal species, is distributed worldwide. Ten intra-specific variants, or genotypes (G1-G10), have been defined based on genetic diversity. To determine the genotypes present in endemic areas of Peru, samples were collected from cattle (44), sheep (41) and humans (14) from Junín, Puno Huancavelica, Cusco, Arequipa and Ayacucho. DNA was extracted from protoscolex and/or germinal layers derived from 99 E. granulosus isolates and used as templates to amplify the mitochondrial cytochrome C oxidase subunit 1 gene. The resulting polymerase chain reaction products were sequenced and further examined by sequence analysis. All isolates, independent of the host, exhibited the G1 genotype. Phylogenetic analysis showed that three isolates from Ayacucho shared the same cluster with microvariant G1(4). The G1 genotype is considered the most widespread and infectious form of E. granulosusworldwide and our results confirm that the same patterns apply to this country. Therefore, these findings should be taken into consideration in developing prevention strategies and control programs for CE in Peru.
Resumo:
In this study, we investigated the expression and activity of liver cytochrome P450s (CYPs) and praziquantel (PZQ) kinetics in mice infected with Schistosoma mansoni. Swiss Webster (SW) mice of both genders were infected (100 cercariae) on postnatal day 10 and killed on post-infection days (PIDs) 30 or 55. Non-infected mice of the same age and sex served as controls. Regardless of mouse sex, infection depressed the activities of CYP1A [ethoxy/methoxy-resorufin-O-dealkylases (EROD/MROD)], 2B9/10 [pentoxy/benzyloxy-resorufin-O-dealkylases (PROD, BROD)], 2E1 [p-nitrophenol-hydroxylase (PNPH)] and 3A11 [erythromycin N-demethylase (END)] on PID 55 but not on PID 30. On PID 55, infection decreased liver CYP mRNA levels (real-time reverse transcription-polymerase chain reaction). On PID 30, whereas mRNA levels remained unaltered in males, they were depressed in females. Plasma PZQ (200 and 400 mg/kg body weight intraperitoneally) levels were measured (high-performance liquid chromatography) at different post-treatment intervals. In males and females, infection delayed the PZQ clearance on PID 55, but not on PID 30. Therefore, it can be concluded that schistosomiasis down-modulated CYP expression and activity and delayed PZQ clearance on PID 55, when a great number of parasite eggs were lodged in the liver. On PID 30, when egg-laying was initiated by the worms, no change of CYP expression and activity was found, except for a depression of CYP1A2 and 3A11 mRNAs in female mice.
Resumo:
The phylogeny and phylogeography of the Old World wood mice (subgenus Sylvaemus, genus Apodemus, Muridae) are well-documented. Nevertheless, the distributions of species, such as A. fulvipectus and A. ponticus remain dubious, as well as their phylogenetic relationships with A. sylvaticus. We analysed samples of Apodemus spp. across Europe using the mitochondrial cytochrome-b gene (cyt-b) and compared the DNA and amino-acid compositions of previously published sequences. The main result stemming from this study is the presence of a well-differentiated lineage of Sylvaemus including samples of various species (A. sylvaticus, A. fulvipectus, A. ponticus) from distant locations, which were revealed to be nuclear copies of the mitochondrial cyt-b. The presence of this cryptic pseudogene in published sequences is supported by different pathways. This has led to important errors in previous molecular trees and hence to partial misinterpretations in the phylogeny of Apodemus.
Resumo:
An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA.
Resumo:
Plasma concentrations of the enantiomers of fluoxetine (FLX) and norfluoxetine (NFLX) were measured at days 7, 14, and 23 of oral administration of 20 mg of racemic fluoxetine in 11 patients who were comedicated with risperidone. Eight patients were genotyped as being cytochrome P4502D6 extensive metabolizers (EMs) and three as cytochrome P4502D6 poor metabolizers (PMs). No statistically significant differences were calculated between EMs and PMs in the concentrations of (R)-FLX and (R)-NFLX for all days examined (day 23, mean +/- SD for (R)-FLX and (R)-NFLX in EMs, 16 +/- 5 and 29 +/- 20 ng/mL, respectively; in PMs, 16 +/- 1 and 20 +/- 2 ng/mL, respectively). However, concentrations of (S)-FLX and (S)-NFLX were higher and lower, respectively, in PMs as compared with EMs (day 7, p = 0.037 and p = 0.036; day 14, p = 0.014 and p = 0.014; day 23, p = 0.068 and p = 0.038). On day 23, mean (S)-FLX and (S)-NFLX in EMs were (mean +/- SD) 39 +/- 26 and 63 +/- 26 ng/mL, and in PMs they were 88 +/- 7 and 19 +/- 2 ng/mL. This study confirms the results of the single-dose studies showing that CYP2D6 is involved in the demethylation of FLX to NFLX, with a stereoselectivity toward the (S)-enantiomer. The data also clearly show that the CYP2D6 genotype has an important influence on the concentrations of the (S)- but not of the (R)-enantiomer of FLX and NFLX after multiple doses.
Resumo:
We examined in vivo the influence of cytochrome P4503A4 (CYP3A4) activity, measured by the 30 min plasma 1'OH-midazolam/midazolam ratio after oral administration of 7.5 mg midazolam, on the methadone steady-state trough plasma concentrations in a group of 32 patients in methadone maintenance treatment. Patients were grouped as receiving 'low' (up to 99 mg/day, n = 10), 'high' (100-199 mg/day, n = 11) and 'very high' (> or = 200 mg/day, n = 11) doses of methadone, and the CYP3A4 metabolic activity was compared between the three groups. (S)-methadone and (R,S)-methadone, but not (R)-methadone, concentrations to dose ratios significantly correlated with the midazolam ratios (r(2) = -0.17, P = 0.018; r(2) = -0.14, P = 0.032; r(2) = -0.10, P = 0.083, respectively), with a 76% higher CYP3A4 activity in the very high-dose group as compared with the low-dose group. Significant differences in the CYP3A4 activity were calculated between the three groups (P = 0.0036), and group-to-group comparisons, using the Bonferroni correction, showed a significant difference between the low-dose and the very high-dose group (P = 0.0039), between the high-dose and the very high-dose group (P = 0.0064), but not between the low-dose and the high-dose group (P = 0.070). The higher CYP3A4 activity measured in patients receiving very high methadone doses could contribute to the need for higher doses in some patients, due to an increased metabolic clearance. This, however, must be confirmed by a prospective study.
Resumo:
Résumé : Dans le but d'examiner les facteurs génétiques qui influencent la pharmacocinétique de la clozapine in vivo, 75 patients traités avec ce médicament antipsychotique ont été genotypés pour les polymorphismes CYP et ABCB1, et phénotypés pour l'activité de CYP1A2 et CYP3A. L'activité de CYP1A2 et les taux plasmatiques de clozapine en steady-state corrèlent d'une manière significative (r=0.61; p=1x10), sans influence du génotype de CYP1A2*1F (p=0.38). Les métaboliseurs déficients CYP2C19 (génotype *2/*2 genotype) avaient des concentrations de clozapine 2,3 fois (p=0.036) plus élevées que les métaboliseurs rapides (non*2/*2). Chez les patients comédiqués avec la fluvoxamine, un fort inhibiteur de CYP1A2, les concentrations de clozapine et de norclozapine corrèlent significativement avec l'activité de CYP3A (r=0.44, p=0.075; r=0.63, p=0.007, respectivement). Les porteurs du génotype ABC81 3435TT avaient des concentrations plasmatiques de clozapine 1,6 fois plus élevées que ceux qui ne présentaient pas ce génotype (p=0.046). En conclusion, cette étude montre pour la première fois, in vivo, le rôle significatif de CYP2C19 et celui du transporteur P-gp dans la pharmacocinétique de la clozapine. Le CYP1A2 est la forme principale de CYP impliquée dans le métabolisme de clozapine, tandis que le CYP2C19 joue un rôle modéré et que le CYP3A4 n'y contribue que chez les patients qui présentent une activité de CYP1A2 réduite. De plus, le polymorphisme de ABC81, mais pas ceux de CYP2B6, CYP2C9, CYP2D6, CYP3A5 et CYP3A7, influence la pharmacocinétique de la clozapine. Abstract : To examine the genetic factors influencing clozapine kinetics in vivo, 75 patients treated with clozapine were gcnotyped for CYPs and ABCBI polymorphisms and phenotyped for CYPIA2 and CYP3A activity. CYPIA2 activity and dose-corrected trough stéady-state plasma concentrations of clozapine correlated significantly (r = -0.61; P = 1 x 10 pow(-6), with no influence of the CYPIA2*IF genotype (P = 0.38). CYP2C 19 poor metabolizers (*2/*2 genotype) had 2.3-fold higher (P = 0.036) clozapine concentrations than the extensive metabolizers (non-*2/*2). In patients comedicated with fluvoxamine, a strong CYPlA2 inhibitor, clozapine and norclozapine concentrations correlate with CYP3A activity (r = 0.44, P = 0.075; r = 0.63, P = 0.007, respectively). Carriers of the ABCB1 3435TT genotype had a 1.6-fold higher clozapine plasma concentrations than noncarriers (P = 0.046). In conclusion, this study has shown for the first time a significant in vivo role of CYP2C19 and the P-gp transporter in the pharmacokinetics of clozapine. CYPlA2 is the main CYP isoform involved in clozapine metabolism, with CYP2C19 contributing moderately, and CYP3A4 contributing only in patients with reduced CYPIA2 activity. In addition, ABCBI, but not CYP1B6, CYP1C9, CYP1D6, CYP3A5, nor CYP3A7 polymorphisms, influence clozapine pharmacokinetics.
Resumo:
This study aims to define the cellular roles of methionine sulfoxide reductases A and B, evolutionarily highly conserved enzymes able to repair oxidized methionines in proteins. msrA and msrB mutants were exposed to an internal oxidative stress by growing them under aerobic conditions on glycerol. Interestingly, the msr mutants behave completely differently under these conditions. The msrA mutant is inhibited, whereas the msrB mutant is stimulated in its growth in comparison with the parent strain. Glycerol can be catabolized by either the GlpK or DhaK pathways in Enterococcus faecalis. Our results strongly suggest that in the msrA mutant, glycerol is catabolized via the GlpK pathway leading to increased synthesis of H2O2, which accumulates to concentrations inhibitory to growth in comparison with the parent strain. In contrast in the msrB mutant, glycerol is metabolized via the DhaK pathway which is not accompanied by the synthesis of H2O2. The molecular basis for the differences in glycerol flux seems to be due to expression differences of the two glycerol-catabolic operons in the msr mutants.
Resumo:
Aims: Cytochrome P4501A2 (CYP1A2) is involved in the metabolism of severaldrugs (clozapine, olanzapine, theopylline, caffeine, etc) and is induced by smoking.This can result in decreased plasma levels of drugs metabolized by thisisoenzyme, causing a decrease in therapeutic response. After quitting smoking,increased plasma levels can lead to adverse effects of the concerned drugs, such asconfusion and seizures, described under clozapine treatment. The present studyaimed to examine the variation of CYP1A2 activity in a large group of smokersbefore and after smoking cessation. Moreover, we aimed to determine whethergenetic polymorphisms of CYP1A2 gene could influence the inducibility ofCYP1A2. Methods: CYP1A2 activity was determined by the paraxanthine/caffeineratio in 194 smokers and in 118 of them being abstinent during a 4-weekperiod. Participants were genotyped for CYP1A2*1F (rs762551), *1D(rs35694136) and *1C (rs2069514) polymorphisms. Results: Smokers had higherCYP1A2 activity (1.55-fold; p < 0.0001). Individual change of CYP1A2 activityafter smoking cessation ranged from 1.0-fold (no change) to 7.3-fold decreasedactivity. In five participants with low initial CYP1A2 activity, an increase wasobserved after smoking cessation. During smoking, CYP1A2*1F (p = 0.005), CYP1A2*1D (p = 0.014), the number of cigarettes/day (p = 0.012), contraceptives use(p < 0.001) and - 163A/- 2467T/- 3860G haplotype (p = 0.002) influencedCYP1A2 activity, while after quitting smoking, CYP1A2*1F (p = 0.017) and contraceptives(p = 0.05) did. No influence of CYP1A2 polymorphisms on the inducibilityof CYP1A2 was observed. Conclusion: Higher CYP1A2 activity wasmeasured in smokers, but with a large interindividual variability of its inductionby smoking. Careful clinical management with the help of therapeutic drug monitoringis therefore needed for patients receiving drugs which are metabolized byCYP1A2, who stop or start smoking. Unidentified genetic variations in theCYP1A2 gene and/or in other genes controlling CYP1A2 activity and other environmentalfactors could be responsible of the observed differences in CYP1A2enzymatic activity and inducibility.