914 resultados para Cutting Speed
Resumo:
Currently, the competition between organizations in the pursuit of consumer preference has become increasingly fierce. In addition, consumers have become increasingly demanding due to high speed with which innovations occur, leaving the companies meet and sometimes surpass those expectations In this context, there is the necessity to use methods as mathematical models capable of dealing with the optimization of multiple responses simultaneously. In this context, this study presents an application of techniques of Design of Experiment in a machining process of a NIMONIC 80 alloy, a “superalloy” that has thermal and mechanical properties that make its machining difficult and in order to do this, the Desirability Function was used. As they are determining conditions in the machining capability of the alloy, the roughness and the cutting length were considered as variable settings, and the factors that can influence them are cutting speed, feed rate, cutting depth, inserts type and lubrication. The analysis of the result pointed out how was the influence of all factors on each response and also showed the efficiency and reliability of the method
Resumo:
Due to the rapid development of some species such as pine and eucalyptus and a growing demand for raw materials, timber, there was a need for detailed studies to better use and higher quality in products derived from wood. In order to contribute to to better utilization of wood ,this study aims to analyze the quality of the wood surface after machining Corymbia citrodora around, with varying feed rates (40, 70, 100 mm/mim), shear rate (1.88, 2.19, 2.51 m/s) and with the use of inserts for turning new and used (cemented carbide). 18 were used bodies and each body was made three different assays for each test were a total of 54 tests three replicates. This study will also addres the analysis of power consumption for each of the tests. With the results obtained through experiments, including the surface roughness of parts and power consumption for each test, we try to evaluate the power consumption in machining with the variations in cutting speed and feed, with two tools carbide
Resumo:
Delivering to the customers a product or service with the expected quality associated to the huge competitiveness that exists in the market nowadays, has been making organizations increasingly focus on quality planning using techniques which are directed towards the continuous improvement process and production optimization. Thus, this paper aims to improve a machining process using the techniques of experimental design to the optimization and this also includes the analysis of the measurement system. For this purpose, the alloy Nimonic 80A, a nickel base superalloy, was used in the process due to its widespread use for high temperatures, applying this study the robust method proposed by Genichi Taguchi, determining the influence of the factors considered input variables, cutting speed, feed rate, depth of cut, type of tool, lubrication, and material hardness, in the output or response variable, surface roughness, concluding with the use of Taguchi orthogonal array L16 and by analysis of ANOVA that the factor feed rate is significant and offers greater effect on the response variable studied, should be set to 0,12mm/rev. Moreover, the factor type of tool has more influence on the process when compared to other factors, being CP250 the one more suitable to the process. Lastly, the interaction feed rate x cutting speed provides greater significance in the process regarding to surface roughness variable, being the best match between them 0,12mm/rev to the feed rate and 90m/min to the cutting speed. In order to evaluate the measurement system, it was applied the repeatability and reproducibility method (R&R), through which we saw that the system needs improvement (R & R = 88.04% >>> 30%) as the value found in the study was well above compared to the one that classifies the system as inappropriate
Resumo:
The machining of super alloys resistant to high temperatures such as nickel alloys, inconel 718 specifically, is a very difficult job to obtain improvements in the process, due to the difficulty of machining at high cutting speeds, the use of these alloys in industries showed great developments in recent years, its application in aeronautical industry spread being used in vane turbo, compressor parts, props and set elements. The automotive, chemical, medical and others also took advantage of the great features of inconel 718 and has used the material. The high temperature resistant alloys have high machining difficulty, a fact that is associated with high cutting forces generated during machining which result in high temperatures. High levels of temperatures can cause deterioration of the cutting edge, with subsequent deformation or breakage, wear most common obtained in machining such materials are flank wear the formation of built-up edge for cutting and notch wear. The experimental part of the work consists in machining of nickel-based alloy Inconel 718 heat treated for hardness, using a tool based ceramic silicon nitride Sandvik (Si3N4) in order to compare the best results obtained in the master's thesis of SANTOS (2010) who used a tool ceramics also the basis of silicon nitride which was developed in the doctoral thesis of SOUZA (2005). Assays were performed on a CNC lathe and was noted for each cutting edge results obtained. Tests were made starting from an initial condition of the tool with cutting speed of 200 m/min, feed 0.5 mm and 0.5 mm depth of cut was reduced cutting speed for the subsequent tests with the same conditions of feed and depth of cut. The tool presented wear instant under two 200 m/min and 100 m/min, premature rupture of 50 m/min and finally cut provided with difficulty... (Complete abstract click electronic access below)
Resumo:
Atualmente, atender as necessidades dos consumidores é uma das metas mais importantes, os consumidores estão em busca de produtos com qualidade e preços mais acessíveis, para isso, é indispensável que as empresas se atualizem para melhorar seus produtos e serviços. Com este cenário, as superligas estão cada vez mais ganhando mercado, pois possuem ótimas propriedades, principalmente em relação a operar em temperaturas elevadas, podendo proporcionar maior eficiência para motores que necessitam trabalhar em altas temperaturas. Em contra partida a essa vantagem, as superligas possuem uma baixa usinabilidade, sendo importante a análise do processo de usinagem para se tornarem mais aplicáveis. Este trabalho visa à otimização do processo de torneamento cilíndrico da superliga Nimonic 80A, com o intuito de melhorar a qualidade do produto, utilizando o Método de Taguchi, com o arranjo ortogonal L16, sendo o comprimento de corte definido como variável resposta e analisados seis fatores que poderiam influenciar na sua variação, tais fatores são: velocidade de corte, avanço, profundidade de corte, tipo de pastilha, lubrificação e dureza do material. Os resultados obtidos demonstraram que os fatores avanço, tipo de pastilha e lubrificação são significativos e exercem influencia no processo, sendo que o avanço deve ser ajustado no nível de 0,12 mm/rev, a pastilha a ser utilizada deve ser CP250 e a lubrificação deve ser feita de maneira abundante, para a otimização do processo. Com a análise dos resultados, também podemos observar a eficiência e confiabilidade do método utilizado, mostrando resultados coerentes
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
The aluminium alloys are used in many fields because of their versatility combined with the excellent aluminium’s properties, mentioned in the study. This study aims to compare the performance of polished Hard Metal, Hard Metal covered with TiB2 and High Speed Steel (HSS) tools, at the aluminium 2024 alloy’s turning, as a function of variation of some turning parameters such as: feed, depth of cut and cutting speed; and study the surface finish and the required power during turning by processing the output data, like analyze the chip’s features for each used tool. The results provide information of the tool’s material effects, when submitted to different turning conditions, about the output variable in question. In this way, it was possible to notice that although the Hard Metal covered with TiB2 tool has provided the better surface finish, the chip’s features were better when the turning was accomplished by the Polished Hard Metal tool. In relation to the required turning’s power, the lowest consumption occurred with the High Speed Steel tool
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
In experimental conditions, cutting forces were studied during turning of green alumina billets, including their correlation with surface aspects of the workpiece. The correlation between cutting power and the removal rate are important parameters for defining the design of ceramic products, since inadequate parameters can produce excessive surface damage to the workpiece. This study examined the forces obtained during turning of alumina workpieces with 99.8% purity in their green state, by means of a three-point dynamometer, evaluating the cutting, feed and depth forces, using a cermet tool under constant machining conditions. Variables were compared with the forces, including surface finish, tool wear and temperature during machining. In the study, it was found that the depth of cut had no significant effect on the surface quality, and the cutting speed and feed influencing the finish. However, preliminary tests for selecting the cutting conditions showed that unsuitables cutting speeds and feeds generate severe damage to the workpiece surface. The best condition was 1.00 mm depth of cut, and the forces increasedfor with each pass performed, with the feed force the variable with greatest increases in relation to the cutting and depth forces, and wear of the cutting tool directly influenced the surface finish, generated by the highly abrasive nature of the alumina particles of the green compact. It is emphasized that the alumina in its green state showed high abrasive effect on the cutting tool during the turning process and the surface finishing of the green workpiece had a direct influence on the sintered workpiece.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
In 2010, the Brazilian forest sector is represented by about 30,000 companies producing US$ 21 billion annually and account for approximately 5% of the gross domestic product (GDP) in the country. The sanding process is highly demanded in various stages of industrialization of the wood, when there is a need for a better quality surface finishing. The objective of this work was to analyze the influence of cutting speed and sandpaper granulometry on both the surface finishing of pieces of Eucalyptus grandis processed through tubular sanding and on the sanding efforts (force and power of sanding). Four cutting speeds were used (19.5, 22.7, 26 and 28.1 m/s), one advance speed (16 m/min) and three sets of sandpaper (80-100, 80-120 and 100-120) being one for chipping and another for finishing, respectively. A central data acquisition system was set up to capture the variables (cutting power, acoustic emission and vibration) in real time. The cutting force was obtained indirectly, through a frequency inverter. The roughness of the parts was measured by a roughness meter before and after sanding. The highest cutting speed used (28.1 m/s) consumed more power and generated more acoustic emission among the four speeds tested. Regarding the vibration, the lower cutting speed (19.5 m/ s) generated the highest vibration in the sander machine. It is concluded that the range of 100-120 sandpapers resulted in values of average roughness (Ra) lower than the other sets of sandpaper used, as it resulted in better surface finishing.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)