958 resultados para Curing light sources
Resumo:
The purpose of our investigation is to compare the intrapulpal temperature changes following blue LED system and halogen lamp irradiation at the enamel surface of permanent teeth. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Several light sources can be used: halogens, arc plasma, lasers, and recently blue LED systems. An important aspect to be observed during such a procedures is the temperature change. In this study, we have used nine human extracted permanent teeth: three central incisors, three lateral incisors, and three canines. Teeth were exposed to two light sources: blue LED system (preliminary commercial model LEC 470-II) and halogen lamp (conventional photo-cure equipment). The surface of teeth was exposed for 20, 40, and 60 sec at the buccal and lingual enamel surface with an angle of 45 degrees. Temperature values measured by a thermistor placed at pulpar chamber were read in time intervals of 1 sec. We obtained plots showing the temperature evolution as a function of time for each experiment. There is a correlation between heating quantity and exposition time of light source: with increasing exposition time, heating increases into the pulpal chamber. The halogen lamp showed higher heating than the LED system, which showed a shorter time of cooling than halogen lamp. The blue LED system seems like the indicated light source for photo-cure of composite resin during the bonding of brackets. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Blue LED equipment did not heat during its use. This could permit a shorter clinical time of operation and better performance. © Mary Ann Liebert, Inc.
Resumo:
Authors - Magno AFF, Martins RP, Vaz LG, Martins LP Objectives - Evaluate the shear bond strength (SBS) and the adhesive remnant index (ARI) of indirect bonded lingual brackets using xenon plasma arc light, light-emitting diode (LED) and conventional quartz-tungsten-halogen light. Material and Methods - Lingual brackets were bonded indirectly to 60 premolars divided to three groups according to the curing light used: Group 1, plasma arc for 6 s; Group 2, LED for 10 s; and Group 3, halogen light for 40 s. After bonding, the specimens were subjected to a shear force until debonding. The debonding pattern was assessed and classified according to the ARI scores. The mean shear bond strengths were accessed by anova followed by the Student-Newman-Keuls test for multiple comparisons. ARI scores were assessed using the chi-square test. Results - The three groups showed significant differences (p < 0.001), with the averages of group 1 < group 2 < group 3. Groups showed no differences regarding ARI scores. Conclusion - Bonding lingual brackets indirectly with plasma arc, during 60% of the time used for the LED, produced lower SBS than obtained with the latter. Using LED during 25% of the time of the halogen light produced lower SBS than obtained with the latter. These differences did not influence the debonding pattern and are clinically acceptable according to the literature. © 2010 John Wiley & Sons A/S.
Resumo:
This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups (n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p < 0.05. The temperature increase (mean value and standard deviation) inside the pulp chamber for the HL group was 6.8 ± 2.8°C; for the DL group was 15.3 ± 8.8°C; and for the LED group was 1.9 ± 1.0°C for. The temperature variation (mean value and standard deviation) on the tooth surface, for the group irradiated with HL was 9.1 ± 2.2°C; for the group irradiated with DL were 25.7 ± 18.9°C; and for the group irradiated with LED were 2.6 ± 1.4°C. The mean temperature increase values were significantly higher for the group irradiated with DL when compared with groups irradiated with HL and LED (p < 0.05). When applying the inferior limits of the interval of confidence of 95%, an application time of 38.7 s was found for HL group, and 4.4 s for DL group. The LED group did not achieve the critical temperatures for pulp or the periodontal, even when irradiated for 360 s. The HL and DL light sources may be used for dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study. © 2010 Pleiades Publishing, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated in vitro the shear bond strength of brackets bonded with xenon plasma arc light, light-emitting diode (LED) and conventional halogen light using different curing times. Brackets were bonded to the buccal surface of 60 human maxillary premolars allocated to five groups. In groups 1 and 2, the resin was cured with the plasma arc for three and six seconds (s), respectively; in groups 3 and 4, the LED was used for five and ten s, respectively; and in group 5, the halogen light was used for 40 s. The specimens were stored in water for 24 hours and subjected to a shear force until bracket failure. The debonding pattern was classified according to the adhesive remnant index (ARI). The results were assessed by Anova and the SNK post-hoc test. No differences were detected among groups 2, 4 and 5, which showed higher averages than groups 1 and 3, which were not different between themselves. The ARI scores showed no differences among the three types of light sources in all times tested. Plasma arc and LED lights can be used with shorter curing times, within certain limits, than conventional halogen light for bonding orthodontic brackets, without decreasing bond strength.
Resumo:
In-office dental bleaching has been subject of several studies. Generally those studies quantify through visual analysis, the shade reduction of the teeth submitted to different bleaching protocols (light sources, bleaching agent concentrations and irradiation time). The objective of this work is the determination of the influence of four irradiation protocols on the obtainment of better aesthetic results using a colorimetric spectrophotometer that quantifies color changes in each situation imposed. Forty bovine incisors were selected in function of similar anatomic characteristics; a concentrated coffee solution was used to stain the teeth. A commercial spectrophotometer was used to measure the color changes during evolution of the experiment (stain and bleaching phases) and the obtained data was analyzed by the ANOVA test. The obtained data showed the evolution of teeth color during the staining period, as well as, the color reduction that each bleaching protocol achieved. Based on our findings it is possible to conclude that bleaching protocols with larger irradiation periods did not showed significant differences when compared with shorter irradiation protocols, in that way the use of protocols with 30 min or more of consecutive irradiation are not clinically justified and also can cause several side effects.
Resumo:
The present study aimed to assess the influence of curing distance on the loss of irradiance and power density of four curing light devices. The behavior in terms of power density of four different dental curing devices was analyzed (Valo, Elipar 2, Radii-Cal, and Optilux-401) using three different distances of photopolymerization (0 mm, 4 mm, and 8 mm). All devices had their power density measured using a MARC simulator. Ten measurements were made per device at each distance. The total amount of energy delivered and the required curing time to achieve 16 J/cm2 of energy was also calculated. Data were statistically analyzed with one-way analysis of variance and Tukey’s tests (p < 0.05). The curing distance significantly interfered with the loss of power density for all curing light devices, with the farthest distance generating the lowest power density and consequently the longer time to achieve an energy density of 16 J/cm2 (p < 0.01). Comparison of devices showed that Valo, in extra power mode, showed the best results at all distances, followed by Valo in high power mode, Valo in standard mode, Elipar 2, Radii-Cal, and Optilux-401 halogen lamp (p < 0.01). These findings indicate that all curing lights induced a significant loss of irradiance and total energy when the light was emitted farther from the probe. The Valo device in extra power mode showed the highest power density and the shortest time to achieve an energy density of 16 J/cm2 at all curing distances.
Resumo:
Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.
Resumo:
The European Union set the ambitious target of reducing energy consumption by 20% within 2020. This goal demands a tremendous change in how we generate and consume energy and urgently calls for an aggressive policy on energy efficiency. Since 19% of the European electrical energy is used for lighting, considerable savings can be achieved with the development of novel and more efficient lighting systems. In this thesis, accomplished in the frame of the EU project CELLO, I report some selected goals we achieved attempting to develop highly efficient, flat, low cost and flexible light sources using Light-Emitting Electrochemical Cells (LECs), based on ionic cyclometalated iridium(III) complexes. After an extensive introduction about LECs and solid-state lighting in general, I focus on the research we carried out on cyclometalated iridium(III) complexes displaying deep-blue emission, which has turned out to be a rather challenging task. In order to demonstrate the wide versatility of this class of compounds, I also report a case in which some tailored iridium(III) complexes act as near-infrared (NIR) sources. In fact, standard NIR emitting devices are typically expensive and, also in this case, LECs could serve as low-cost alternatives in fields were NIR luminescence is crucial, such as telecommunications and bioimaging. Since LECs are based on only one active material, in the last chapter I stress the importance of an integrated approach toward the right selection of suitable emitters not only from the photophysical, but also from the point of view of material science. An iridium(III) complex, once in the device, is interacting with ionic liquids, metal cathodes, electric fields, etc. All these interactions should be taken in to account if Europe really wants to implement more efficient lighting paradigms, generating light beyond research labs.
Resumo:
Light traps have been used widely to sample insect abundance and diversity, but their performance for sampling scarab beetles in tropical forests based on light source type and sampling hours throughout the night has not been evaluated. The efficiency of mercury-vapour lamps, cool white light and ultraviolet light sources in attracting Dynastinae, Melolonthinae and Rutelinae scarab beetles, and the most adequate period of the night to carry out the sampling was tested in different forest areas of Costa Rica. Our results showed that light source wavelengths and hours of sampling influenced scarab beetle catches. No significant differences were observed in trap performance between the ultraviolet light and mercury-vapour traps, whereas these two methods caught significantly more species richness and abundance than cool white light traps. Species composition also varied between methods. Large differences appear between catches in the sampling period, with the first five hours of the night being more effective than the last five hours. Because of their high efficiency and logistic advantages, we recommend ultraviolet light traps deployed during the first hours of the night as the best sampling method for biodiversity studies of those scarab beetles in tropical forests.
Resumo:
Accurate colour vision testing requires using the correct illumination. With the plethora of 'daylight' lamps available, is there a cost-effective alternative to the discontinued MacBeth Easel lamp? Smoking is a known risk factor for macula degeneration. As the macula is responsible for colour discrimination, any toxin that affects it has the potential to influence colour discrimination. Aims: To find a costeffective light source for colour vision testing. To investigate the effect of smoking on colour discrimination. To explore how deuteranomalous trichromats compare with normal trichromats. Methods: Using the Ishihara colour vision test subjects were classified into the groups: 'Normal/Control', 'Smoker/Test', and 'Case Study' (subjects who failed the screening test and did not smoke). They completed the Farnsworth Munsell 100 Hue test under each of the three light sources: Phillips EcoHalo Twist (tungsten halogen - THL), Kosnic KCF07ALU/GU10-865 (compact fluorescent- CFL), and Deal Guardian Ltd. GU103X2WA4B-60 (light-emitting diode - LED) Results: 42 subjects took part in the study: 18 in the Normal/Control group, 18 in the Smoker/Test group, and 6 in the Case Study group. For the Normal/Control group the total error scores (TESs) were significantly lower with the CFL than with the THL (p = 0.017) as it was for the Case Study group (p = 0.009). No significant differences were found between the Normal/Control group and the Smoker/Test group for each light source. Decision tree analysis found pack years to be a significant variable for TES. Discussion: All three light sources were comparable with previous studies. The CFL provided better colour discrimination than the LED despite them both being 6500 K. Deuteranomalous trichromats showed a greatest deviation than normal trichromats using the LED. Conclusions: The Kosnic KCF07ALU/GU10-865 is a cost-effective alternative for colour vision testing. Smoking appears to have an effect on colour vision, but requires further investigation.