887 resultados para Cuckoo search
Resumo:
Purpose – This paper seeks to look at youth justice (YJ) personnel training and education and the recommendations about it made in Time for a Fresh Start. Design/methodology/approach – The pedagogic tensions that currently shape YJ training are described – particularly those around the question of instructionalism vs education and what “specialist” means in the context of YJ. Findings – The paper suggests that the authors of Time for a Fresh Start missed the opportunity to better serve the public and young people's interests by neither acknowledging the pedagogic tensions nor articulating what a “specialist” “YJ” professional training can mean in twenty-first century England and Wales. Originality/value – The paper highlights an urgent need for an open debate between academics, practitioners and policy makers about YJ pedagogy.
Resumo:
From a law enforcement standpoint, the ability to search for a person matching a semantic description (i.e. 1.8m tall, red shirt, jeans) is highly desirable. While a significant research effort has focused on person re-detection (the task of identifying a previously observed individual in surveillance video), these techniques require descriptors to be built from existing image or video observations. As such, person re-detection techniques are not suited to situations where footage of the person of interest is not readily available, such as a witness reporting a recent crime. In this paper, we present a novel framework that is able to search for a person based on a semantic description. The proposed approach uses size and colour cues, and does not require a person detection routine to locate people in the scene, improving utility in crowded conditions. The proposed approach is demonstrated with a new database that will be made available to the research community, and we show that the proposed technique is able to correctly localise a person in a video based on a simple semantic description.
Resumo:
In the context of ambiguity resolution (AR) of Global Navigation Satellite Systems (GNSS), decorrelation among entries of an ambiguity vector, integer ambiguity search and ambiguity validations are three standard procedures for solving integer least-squares problems. This paper contributes to AR issues from three aspects. Firstly, the orthogonality defect is introduced as a new measure of the performance of ambiguity decorrelation methods, and compared with the decorrelation number and with the condition number which are currently used as the judging criterion to measure the correlation of ambiguity variance-covariance matrix. Numerically, the orthogonality defect demonstrates slightly better performance as a measure of the correlation between decorrelation impact and computational efficiency than the condition number measure. Secondly, the paper examines the relationship of the decorrelation number, the condition number, the orthogonality defect and the size of the ambiguity search space with the ambiguity search candidates and search nodes. The size of the ambiguity search space can be properly estimated if the ambiguity matrix is decorrelated well, which is shown to be a significant parameter in the ambiguity search progress. Thirdly, a new ambiguity resolution scheme is proposed to improve ambiguity search efficiency through the control of the size of the ambiguity search space. The new AR scheme combines the LAMBDA search and validation procedures together, which results in a much smaller size of the search space and higher computational efficiency while retaining the same AR validation outcomes. In fact, the new scheme can deal with the case there are only one candidate, while the existing search methods require at least two candidates. If there are more than one candidate, the new scheme turns to the usual ratio-test procedure. Experimental results indicate that this combined method can indeed improve ambiguity search efficiency for both the single constellation and dual constellations respectively, showing the potential for processing high dimension integer parameters in multi-GNSS environment.
Resumo:
Success of query reformulation and relevant information retrieval depends on many factors, such as users’ prior knowledge, age, gender, and cognitive styles. One of the important factors that affect a user’s query reformulation behaviour is that of the nature of the search tasks. Limited studies have examined the impact of the search task types on query reformulation behaviour while performing Web searches. This paper examines how the nature of the search tasks affects users’ query reformulation behaviour during information searching. The paper reports empirical results from a user study in which 50 participants performed a set of three Web search tasks – exploratory, factorial and abstract. Users’ interactions with search engines were logged by using a monitoring program. 872 unique search queries were classified into five query types – New, Add, Remove, Replace and Repeat. Users submitted fewer queries for the factual task, which accounted for 26%. They completed a higher number of queries (40% of the total queries) while carrying out the exploratory task. A one-way MANOVA test indicated a significant effect of search task types on users’ query reformulation behaviour. In particular, the search task types influenced the manner in which users reformulated the New and Repeat queries.
Resumo:
This research paper explores the impact product personalisation has upon product attachment and aims to develop a deeper understanding of why, how and if consumers choose to do so. The current research in this field is mainly based on attachment theories and is predominantly product specific. This paper researches the link between product attachment and personalisation through in-depth, semi-structured interviews, where the data has been thematically analysed and broken down into three themes, and nine sub-themes. It was found that participants did become more attached to products once they were personalised and the reasons why this occurred varied. The most common reasons that led to personalisation were functionality and usability, the expression of personality through a product and the complexity of personalisation. The reasons why participants felt connected to their products included strong emotions/memories, the amount of time and effort invested into the personalisation, a sense of achievement. Reasons behind the desire for personalisation included co-designing, expression of uniqueness/individualism and having choice for personalisation. Through theme and inter-theme relationships, many correlations were formed, which created the basis for design recommendations. These recommendations demonstrate how a designer could implement the emotions and reasoning for personalisation into the design process.
Resumo:
Entity-oriented search has become an essential component of modern search engines. It focuses on retrieving a list of entities or information about the specific entities instead of documents. In this paper, we study the problem of finding entity related information, referred to as attribute-value pairs, that play a significant role in searching target entities. We propose a novel decomposition framework combining reduced relations and the discriminative model, Conditional Random Field (CRF), for automatically finding entity-related attribute-value pairs from free text documents. This decomposition framework allows us to locate potential text fragments and identify the hidden semantics, in the form of attribute-value pairs for user queries. Empirical analysis shows that the decomposition framework outperforms pattern-based approaches due to its capability of effective integration of syntactic and semantic features.
Resumo:
Can China improve the competitiveness of its culture in world markets? Should it focus less on quantity and more on quality? How should Chinese cultural producers and distributors target audiences overseas? These are important questions facing policy makers today. In this paper I investigate how China might best deploy its soft power capabilities: for instance, should it try to demonstrate that it is a creative, innovative nation, capable of original ideas? Or should it put the emphasis on validating its credentials as an enduring culture and civilisation? In order to investigate these questions I introduce the cultural innovation timeline, a model that explains how China is adding value. There are six stages in the timeline but I will focus in particular on how the timeline facilitates cultural trade. In the second part of the paper I look at some of the challenges facing China, particularly the reception of its cultural products in international markets.
Resumo:
A genome-wide search for markers associated with BSE incidence was performed by using Transmission-Disequilibrium Tests (TDTs). Significant segregation distortion, i.e., unequal transmission probabilities of alleles within a locus, was found for three marker loci on Chromosomes (Chrs) 5, 10, and 20. Although TDTs are robust to false associations owing to hidden population substructures, it cannot distinguish segregation distortion caused by a true association between a marker and bovine spongiform encephalopathy (BSE) from a population-wide distortion. An interaction test and a segregation distortion analysis in half-sib controls were used to disentangle these two alternative hypotheses. None of the markers showed any significant interaction between allele transmission rates and disease status, and only the marker on Chr 10 showed a significant segregation distortion in control individuals. Nevertheless, the control group may have been a mixture of resistant and susceptible but unchallenged individuals. When new genotypes were generated in the vicinity of these three markers, evidence for an association with BSE was confirmed for the locus on Chr 5.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
Least developed countries (LDCs) are the primary victims of environmental changes, including present and future impacts of climate change. Environmental degradation poses a serious threat to the conservation and sustainable use of natural resources, thus hindering development in LDCs. Simultaneously, poverty is itself both a major cause and effect of global environmental problems. Against this backdrop, this essay argues that without recognition and protection of a collective right to development, genuine environmental protection will remain unachievable. Further, this essay submits that, particularly in the context of LDCs, the right to environment and the right to development are inseparable. Finally, this essay argues that the relationship between the right to environment and the right to development must fall within the paradigm of sustainable development if the promotion and protection of those rights are to be justified.
Resumo:
In this article, we investigate experimentally whether people search optimally and how price promotions influence search behaviour. We implement a sequential search task with exogenous price dispersion in a baseline treatment and introduce discounts in two experimental treatments. We find that search behaviour is roughly consistent with optimal search but also observe some discount biases. If subjects do not know in advance where discounts are offered, the purchase probability is increased by 19 percentage points in shops with discounts, even after controlling for the benefit of the discount and for risk preferences. If consumers know in advance where discounts are given, then the bias is only weakly significant and much smaller (7 percentage points).