987 resultados para Covalent cross-link


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peptides bound to class II major histocompatibility complex (MHC) molecules extend out both ends of the peptide binding groove. This structural feature provided the opportunity to design multivalent polypeptide chains that cross-link class II MHC molecules through multiple, repetitive MHC binding sites. By using recombinant techniques, polypeptide oligomers were constructed that consist of up to 32 copies of an HLA-DR1-restricted T cell epitope. The epitope HA306–318, derived from influenza virus hemagglutinin, was connected by 12- to 36-aa long spacer sequences. These oligomers were found to cross-link soluble HLA-DR1 molecules efficiently and, upon binding to the MHC molecules of a monocyte line, to trigger signal transduction indicated by the enhanced expression of some cell surface molecules. A particularly strong effect was evident in the T cell response. A hemagglutinin-specific T cell clone recognized these antigens at concentrations up to three to four orders of magnitude lower than that of the peptide or the hemagglutinin protein. Both signal transduction in the monocyte and the proliferative response of the T cell were affected greatly by the length of the oligomer (i.e., the number of repetitive units) and the distance of the epitopes within the oligomer (spacing). Thus, the formation of defined clusters of T cell receptor/MHC/peptide antigen complexes appears to be crucial for triggering the immune response and can be used to enhance the antigenicity of a peptide antigen by oligomerizing the epitope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ERCC1–XPF is a structure-specific nuclease with two subunits, ERCC1 and XPF. The enzyme cuts DNA at junctions where a single strand moves 5′ to 3′ away from a branch point with duplex DNA. This activity has a central role in nucleotide excision repair (NER), DNA cross-link repair and recombination. To dissect the activities of the nuclease it is necessary to investigate the subunits individually, as studies of the enzyme so far have only used the heterodimeric complex. We produced recombinant ERCC1 and XPF separately in Escherichia coli as soluble proteins. Activity was monitored by a sensitive dual incision assay for NER by complementation of cell extracts. XPF and ERCC1 are unstable in mammalian cells in the absence of their partners but we found, surprisingly, that ERCC1 alone could confer some repair to extracts from ERCC1-defective cells. A version of ERCC1 lacking the first 88 non-conserved amino acids was also functional. This indicated that a small amount of active XPF was present in ERCC1 extracts, and immunoassays showed this to be the case. Some repair in XPF-defective extracts could be achieved by adding ERCC1 and XPF proteins together, but not by adding only XPF. The results show for the first time that functional ERCC1–XPF can be formed from separately produced subunits. Protein sequence comparison revealed similarity between the ERCC1 family and the C-terminal region of the XPF family, including the regions of both proteins that are necessary for the ERCC1–XPF heterodimeric interaction. This suggests that the ERCC1 and XPF families are related via an ancient duplication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The RESID Database is a comprehensive collection of annotations and structures for protein post-translational modifications including N-terminal, C-terminal and peptide chain cross-link modifications. The RESID Database includes systematic and frequently observed alternate names, Chemical Abstracts Service registry numbers, atomic formulas and weights, enzyme activities, taxonomic range, keywords, literature citations with database cross-references, structural diagrams and molecular models. The NRL-3D Sequence–Structure Database is derived from the three-dimensional structure of proteins deposited with the Research Collaboratory for Structural Bioinformatics Protein Data Bank. The NRL-3D Database includes standardized and frequently observed alternate names, sources, keywords, literature citations, experimental conditions and searchable sequences from model coordinates. These databases are freely accessible through the National Cancer Institute–Frederick Advanced Biomedical Computing Center at these web sites: http://www.ncifcrf.gov/RESID, http://www.ncifcrf.gov/ NRL-3D; or at these National Biomedical Research Foundation Protein Information Resource web sites: http://pir.georgetown.edu/pirwww/dbinfo/resid.html, http://pir.georgetown.edu/pirwww/dbinfo/nrl3d.html

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monomer composition of the esterified part of suberin can be determined using gas chromatography-mass spectroscopy technology and is accordingly believed to be well known. However, evidence was presented recently indicating that the suberin of green cotton (Gossypium hirsutum cv Green Lint) fibers contains substantial amounts of esterified glycerol. This observation is confirmed in the present report by a sodium dodecyl sulfate extraction of membrane lipids and by a developmental study, demonstrating the correlated accumulation of glycerol and established suberin monomers. Corresponding amounts of glycerol also occur in the suberin of the periderm of cotton stems and potato (Solanum tuberosum) tubers. A periderm preparation of wound-healing potato tuber storage parenchyma was further purified by different treatments. As the purification proceeded, the concentration of glycerol increased at about the same rate as that of α,ω-alkanedioic acids, the most diagnostic suberin monomers. Therefore, it is proposed that glycerol is a monomer of suberins in general and can cross-link aliphatic and aromatic suberin domains, corresponding to the electron-translucent and electron-opaque suberin lamellae, respectively. This proposal is consistent with the reported dimensions of the electron-translucent suberin lamellae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In previous experiments, the homeodomain proteins even-skipped and fushi-tarazu were found to UV cross-link to a surprisingly wide array of DNA sites in living Drosophila embryos. We now show that UV cross-linking gives a highly accurate measure of DNA binding by these proteins. In addition, the binding of even-skipped and fushi-tarazu proteins has been measured in vitro to the same DNA fragments that were examined in vivo. This analysis shows that these proteins have broad DNA recognition properties in vitro that are likely to be important determinants of their distribution on DNA in vivo, but it also shows that in vitro DNA binding specificity alone is not sufficient to explain the distribution of these proteins in embryos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extent of swelling of cross-linked poly(dimethylsiloxane) and linear low-density poly(ethylene) in supercritical CO2 has been investigated using high-pressure NMR spectroscopy and microscopy. Poly(dimethylsiloxane) was cross-linked to four different cross-link densities and swollen in supercritical CO2. The Flory-Huggins interaction parameter, x, was found to be 0.62 at 300 bar and 45 degrees C, indicating that supercritical CO2 is a relatively poor solvent compared to toluene or benzene. Linear low-density poly(ethylene) was shown to exhibit negligible swelling upon exposure to supercritical CO2 up to 300 bar. The effect Of CO2 pressure on the amorphous region of the poly(ethylene) was investigated by observing changes in the H-1 T-2 relaxation times of the polymer. These relaxation times decreased with increasing pressure, which was attributed to a decrease in mobility of the polymer chains as a result of compressive pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism of pectin gelation depends on the degree of methoxylation. High methoxyl pectin gels due to hydrophobic interactions and hydrogen bonding between pectin molecules. Low methoxyl pectin forms gels in the presence of di- and polyvalent cations which cross link and neutralise the negative charges of the pectin molecule. Monovalent cations normally do not lead to gel formation with high methoxyl pectin solutions free of divalent cations, especially Ca. The present study found that alkali (NaOH or KOH) added to high methoxyl pectin leads to gel formation in a concentration-depended manner. It was also found that monovalent cations (Na and K) induce gelation of low methoxyl pectin and the time required for gel formation (setting time) depends on the cation concentration. The results indicate that a combined char-e neutralisation and ionic strength effect is responsible for the monovalent cation-induced gelation of pectin. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diabetes mellitus is responsible for a spectrum of cardiovascular disease. The best known complications arise from endothelial dysfunction, oxidation, inflammation, and vascular remodelling and contribute to atherogenesis. However, the effects on the heart also relate to concurrent hypertensive heart disease, as well as direct effects of diabetes on the myocardium. Diabetic heart disease, defined as myocardial disease in patients with diabetes that cannot be ascribed to hypertension, coronary artery disease, or other known cardiac disease, is reviewed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liver fibrosis and its end-stage disease cirrhosis are a main cause of mortality and morbidity worldwide. Thus far, there is no efficient pharmaceutical intervention for the treatment of liver fibrosis. Liver fibrosis is characterized by excessive accumulation of the extracellular matrix (ECM) proteins. Transglutaminase (TG)-mediated covalent cross-linking has been implicated in the stabilization and accumulation of ECM in a number of fibrotic diseases. Thus, the use of tissue TG2 inhibitors has potential in the treatment of liver fibrosis. Recently, we introduced a novel group of site-directed irreversible specific inhibitors of TGs. Here, we describe the development of a liposome-based drug-delivery system for the site-specific delivery of these TG inhibitors into the liver. By using anionic or neutral-based DSPC liposomes, the TG inhibitor can be successfully incorporated into these liposomes and delivered specifically to the liver. Liposomes can therefore be used as a potential carrier system for site-specific delivery of the TG2 inhibitors into the liver, opening up a potential new avenue for the treatment of liver fibrosis and its end-stage disease cirrhosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Investigations were undertaken to study the role of the protein cross-linking enzyme tissue transglutaminase in changes associated with the extracellular matrix and in the cell death of human dermal fibroblasts following exposure to a solarium ultraviolet A source consisting of 98.8% ultraviolet A and 1.2% ultraviolet B. Exposure to nonlethal ultraviolet doses of 60 to 120 kJ per m2 resulted in increased tissue transglutaminase activity when measured either in cell homogenates, "in situ" by incorporation of fluorescein-cadaverine into the extracellular matrix or by changes in the epsilon(gamma-glutamyl) lysine cross-link. This increase in enzyme activity did not require de novo protein synthesis. Incorporation of fluorescein-cadaverine into matrix proteins was accompanied by the cross-linking of fibronectin and tissue transglutaminase into nonreducible high molecular weight polymers. Addition of exogenous tissue transglutaminase to cultured cells mimicking extensive cell leakage of the enzyme resulted in increased extracellular matrix deposition and a decreased rate of matrix turnover. Exposure of cells to 180 kJ per m2 resulted in 40% to 50% cell death with dying cells showing extensive tissue transglutaminase cross-linking of intracellular proteins and increased cross-linking of the surrounding extracellular matrix, the latter probably occurring as a result of cell leakage of tissue transglutaminase. These cells demonstrated negligible caspase activation and DNA fragmentation but maintained their cell morphology. In contrast, exposure of cells to 240 kJ per m2 resulted in increased cell death with caspase activation and some DNA fragmentation. These cells could be partially rescued from death by addition of caspase inhibitors. These data suggest that changes in cross-linking both in the intracellular and extracellular compartments elicited by tissue transglutaminase following exposure to ultraviolet provides a rapid tissue stabilization process following damage, but as such may be a contributory factor to the scarring process that results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.