956 resultados para Coulomb-Mohr


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-body charge transfer reactions with Coulomb interaction in the final state are considered within the framework of coordinate-space integro-differential Faddeev-Hahn-type equations within two- and six-state close-coupling approximations. The method is employed to study direct muon transfer in low-energy collisions of the muonic hydrogen H-mu by helium (He2+) and lithium (Li3+) nuclei. The experimentally observed isotopic dependence is reproduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider here a Coulomb gauge quark model which includes an explicit construct for a nontrivial vacuum structure in QCD at finite density. Non-perturbative renormalization of ultraviolet diverges is performed by adding counterterms. The equation of state for u and d quark matter at zero temperature is calculated in the Hartree-Fock approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the (D) over barN interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range meson-baryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective (D) over barN potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication we present results of a study of chiral symmetry in quark matter using an effective Coulomb gauge QCD Hamiltonian. QCD in Coulomb gauge is convenient for a variational approach based on a quasiparticle picture for the transverse gluons, in which a confining Coulomb potential arises naturally. We show that such an effective Hamiltonian predicts chiral restoration at too low quark densities. Possible reasons for such deficiency are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the derivation of an effective Hamiltonian which involves explicit hadron degrees of freedom and consistently combines chiral symmetry and color confinement. We use a method known as Fock-Tani (FT) representation and a quark model formulated in the context of Coulomb gauge QCD. Using this Hamiltonian, we evaluate the dissociation cross section of J/psi in collision with rho.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiclassical approach to study pure Coulomb excitation of Pb-208 giant dipole isovector resonance is examined. We consider medium energy projectiles and assume the target excitation to be described by a simple Goldhaber-Teller model. It is shown that the main features concerning the angular distribution are obtained in the angular range described by the model and an estimate is made of the pure Coulomb dipole contribution to the measured cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unitary pole approximation is used to construct a separable representation for a potential U which consists of a Coulomb repulsion plus an attractive potential of the Yamaguchi type. The exact bound-state wave function is employed. U is chosen as the potential which binds the proton in the 1d5/2 single-particle orbit in F-17. Using the separable representation derived for U, and assuming a separable Yamaguchi potential to describe the 1d5/2 neutron in O-17, the energies and wave functions of the ground state (1+) and the lowest 0+ state of F-18 are calculated in the Gore-plus-two-nucleons model solving the Faddeev equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schrodinger equation with the truncated Coulomb potential is solved using the supersymmetric quantum mechanics formalism, with and without the cutoff in the angular momentum potential. We obtain some analytical eigenfunctions and eigenvalues for particular values of the cutoff parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gel'fand-Levitan formalism is used to study how a selected set of bound states can be eliminated from the spectrum of the Coulomb potential and also how to construct a bound state in the Coulomb continuum. It is demonstrated that a sizeable quantum well can be produced by deleting a large number of levels from the s spectral series and the edge of the Coulomb potential alone can support the von Neumann-Wigner states in the continuum. © 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formalism of supersymmetric quantum mechanics supplies a trial wave function to be used in the variational method. The screened Coulomb potential is analyzed within this approach. Numerical and exact results for energy eigenvalues are compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the negative dimensional integration method (NDIM) to three outstanding gauges: Feynman, light-cone, and Coulomb gauges. Our aim is to show that NDIM is a very suitable technique to deal with loop integrals, regardless of which gauge choice that originated them. In the Feynman gauge we perform scalar two-loop four-point massless integrals; in the light-cone gauge we calculate scalar two-loop integrals contributing to two-point functions without any kind of prescriptions, since NDIM can abandon such devices - this calculation is the first test of our prescriptionless method beyond one-loop order; and finally, for the Coulomb gauge we consider a four-propagator massless loop integral, in the split-dimensional regularization context. © 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Coulomb gauge has at least two advantages over other gauge choices in that bound states between quarks and studies of confinement are easier to understand in this gauge. However, perturbative calculations, namely Feynman loop integrations, are not well defined (there are the so-called energy integrals) even within the context of dimensional regularization. Leibbrandt and Williams proposed a possible cure to such a problem by splitting the space-time dimension into D = ω + ρ, i.e., introducing a specific parameter ρ to regulate the energy integrals. The aim of our work is to apply the negative dimensional integration method (NDIM) to the Coulomb gauge integrals using the recipe of split-dimension parameters and present complete results - finite and divergent parts - to the one- and two-loop level for arbitrary exponents of the propagators and dimension.