995 resultados para Cosmic ray experiments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 +/- 0.7 (stat) +/- 6.7 (syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations of H3+ in the Galactic diffuse interstellar medium (ISM) have led to various surprising results, including the conclusion that the cosmic-ray ionization rate (zeta_2) is about 1 order of magnitude larger than previously thought. The present survey expands the sample of diffuse cloud sight lines with H3+ observations to 50, with detections in 21 of those. Ionization rates inferred from these detections are in the range (1.7+-1.0)x10^-16 s^-1 < zeta_2 < (10.6+-6.8)x10^-16 s^-1 with a mean value of zeta_2=(3.3+-0.4)x10^-16 s^-1. Upper limits (3sigma) derived from non-detections of H3+ are as low as zeta_2 < 0.4x10^-16 s^-1. These low upper-limits, in combination with the wide range of inferred cosmic-ray ionization rates, indicate variations in zeta_2 between different diffuse cloud sight lines. Calculations of the cosmic-ray ionization rate from theoretical cosmic-ray spectra require a large flux of low-energy (MeV) particles to reproduce values inferred from observations. Given the relatively short range of low-energy cosmic rays --- those most efficient at ionization --- the proximity of a cloud to a site of particle acceleration may set its ionization rate. Variations in zeta_2 are thus likely due to variations in the cosmic-ray spectrum at low energies resulting from the effects of particle propagation. To test this theory, H3+ was observed in sight lines passing through diffuse molecular clouds known to be interacting with the supernova remnant IC 443, a probable site of particle acceleration. Where H3+ is detected, ionization rates of zeta_2=(20+-10)x10^-16 s^-1 are inferred, higher than for any other diffuse cloud. These results support both the concept that supernova remnants act as particle accelerators, and the hypothesis that propagation effects are responsible for causing spatial variations in the cosmic-ray spectrum and ionization rate. Future observations of H3+ near other supernova remnants and in sight lines where complementary ionization tracers (OH+, H2O+, H3O+) have been observed will further our understanding of the subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Short Baseline Neutrino Program at Fermilab aims to confirm or definitely rule out the existence of sterile neutrinos at the eV mass scale. The program will perform the most sensitive search in both the nue appearance and numu disappearance channels along the Booster Neutrino Beamline. The far detector, ICARUS-T600, is a high-granularity Liquid Argon Time Projection Chamber located at 600 m from the Booster neutrino source and at shallow depth, thus exposed to a large flux of cosmic particles. Additionally, ICARUS is located 6 degrees off axis with respect to the Neutrino beam from the Main Injector. This thesis presents the construction, installation and commissioning of the ICARUS Cosmic Ray Tagger system, providing a 4 pi coverage of the active liquid argon volume. By exploiting only the precise nanosecond scale synchronization of the cosmic tagger and the PMT optical flashes it is possible to determine if an event was likely triggered by a cosmic particle. The results show that using the Top Cosmic Ray Tagger alone a conservative rejection larger than 65% of the cosmic induced background can be achieved. Additionally, by requiring the absence of hits in the whole cosmic tagger system it is possible to perform a pre-selection of contained neutrino events ahead of the full event reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis work, a cosmic-ray telescope was set up in the INFN laboratories in Bologna using smaller size replicas of CMS Drift Tubes chambers, called MiniDTs, to test and develop new electronics for the CMS Phase-2 upgrade. The MiniDTs were assembled in INFN National Laboratory in Legnaro, Italy. Scintillator tiles complete the telescope, providing a signal independent of the MiniDTs for offline analysis. The telescope readout is a test system for the CMS Phase-2 upgrade data acquisition design. The readout is based on the early prototype of a radiation-hard FPGA-based board developed for the High Luminosity LHC CMS upgrade, called On Board electronics for Drift Tubes. Once the set-up was operational, we developed an online monitor to display in real-time the most important observables to check the quality of the data acquisition. We performed an offline analysis of the collected data using a custom version of CMS software tools, which allowed us to estimate the time pedestal and drift velocity in each chamber, evaluate the efficiency of the different DT cells, and measure the space and time resolution of the telescope system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highest energy cosmic ray event reported by the Auger Observatory has an energy of 148 EeV. It does not correlate with any nearby (z<0.024) object capable of originating such a high energy event. Intrigued by the fact that the highest energy event ever recorded (by the Fly`s Eye collaboration) points to a faraway quasar with very high radio luminosity and large Faraday rotation measurement, we have searched for a similar source for the Auger event. We find that the Auger highest energy event points to a quasar with similar characteristics to the one correlated to the Fly`s Eye event. We also find the same kind of correlation for one of the highest energy AGASA events. We conclude that so far these types of quasars are the best source candidates for both Auger and Fly`s Eye highest energy events. We discuss a few exotic candidates that could reach us from gigaparsec distances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose a simple model for the total proton-air cross section, which is an improvement of the minijet model with the inclusion of a window in the p(T)-spectrum associated to the saturation physics. Our approach introduces a natural cutoff for the perturbative calculations which modifies the energy behavior of this component. The saturated component is calculated with a dipole model. The results are compared with experimental cross sections measured in cosmic ray experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the rst two moments of the lnA distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean lnA and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10(15) to 3 x 10(20) eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data are available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 x 10(19) eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the Standard Model of particle physics (SM) provides an extremely successful description of the ordinary matter, one knows from astronomical observations that it accounts only for around 5% of the total energy density of the Universe, whereas around 30% are contributed by the dark matter. Motivated by anomalies in cosmic ray observations and by attempts to solve questions of the SM like the (g-2)_mu discrepancy, proposed U(1) extensions of the SM gauge group have raised attention in recent years. In the considered U(1) extensions a new, light messenger particle, the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the SM by kinetic mixing. This allows for a search for this particle in laboratory experiments exploring the electromagnetic interaction. Various experimental programs have been started to search for hidden photons, such as in electron-scattering experiments, which are a versatile tool to explore various physics phenomena. One approach is the dedicated search in fixed-target experiments at modest energies as performed at MAMI or at JLAB. In these experiments the scattering of an electron beam off a hadronic target e+(A,Z)->e+(A,Z)+l^+l^- is investigated and a search for a very narrow resonance in the invariant mass distribution of the lepton pair is performed. This requires an accurate understanding of the theoretical basis of the underlying processes. For this purpose it is demonstrated in the first part of this work, in which way the hidden photon can be motivated from existing puzzles encountered at the precision frontier of the SM. The main part of this thesis deals with the analysis of the theoretical framework for electron scattering fixed-target experiments searching for hidden photons. As a first step, the cross section for the bremsstrahlung emission of hidden photons in such experiments is studied. Based on these results, the applicability of the Weizsäcker-Williams approximation to calculate the signal cross section of the process, which is widely used to design such experimental setups, is investigated. In a next step, the reaction e+(A,Z)->e+(A,Z)+l^+l^- is analyzed as signal and background process in order to describe existing data obtained by the A1 experiment at MAMI with the aim to give accurate predictions of exclusion limits for the hidden photon parameter space. Finally, the derived methods are used to find predictions for future experiments, e.g., at MESA or at JLAB, allowing for a comprehensive study of the discovery potential of the complementary experiments. In the last part, a feasibility study for probing the hidden photon model by rare kaon decays is performed. For this purpose, invisible as well as visible decays of the hidden photon are considered within different classes of models. This allows one to find bounds for the parameter space from existing data and to estimate the reach of future experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67 X 10(6) cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, alpha(T), relating changes in the muon rate to changes in atmospheric temperature was found to be alpha(T) 0: 873 +/- 0: 009(stat) +/- 0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to alpha(T) due to the different masses and lifetimes. This allows the measured value of alpha(T) to be interpreted as a measurement of the K/pi ratio for E(p) greater than or similar to 7 TeV of 0.12(-0.05)(+0.07), consistent with the expectation from collider experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To cosmic rays incident near the horizon the Earth's atmosphere represents a beam dump with a slant depth reaching 36 000 g cm-2 at 90. The prompt decay of a heavy quark produced by very high energy cosmic ray showers will leave an unmistakable signature in this dump. We translate the failure of experiments to detect such a signal into an upper limit on the heavy quark hadroproduction cross section in the energy region beyond existing accelerators. Our results disfavor any rapid growth of the cross section or the gluon structure function beyond conservative estimates based on perturbative QCD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

If there are large extra dimensions and the fundamental Planck scale is at the TeV scale, then the question arises of whether ultrahigh energy cosmic rays might probe them. We study the neutrino-nucleon cross section in these models. The elastic forward scattering is analyzed in some detail, hoping to clarify earlier discussions. We also estimate the black hole production rate. We study energy loss from graviton mediated interactions and conclude that they cannot explain the cosmic ray events above the GZK energy limit. However, these interactions could start horizontal air showers with characteristic profile and at a rate higher than in the standard model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Galactic cosmic ray (GCR) changes have been suggested to affect weather and climate, and new evidence is presented here directly linking GCRs with clouds. Clouds increase the diffuse solar radiation, measured continuously at UK surface meteorological sites since 1947. The ratio of diffuse to total solar radiation-the diffuse fraction, (DF)-is used to infer cloud, and is compared with the daily mean neutron count rate measured at Climax; Colorado from 1951-2000, which provides a globally representative indicator of cosmic rays. Across the UK, oil days of high cosmic ray flux (above 3600 X 10(2) neutron counts h(-1), which occur 87% of the time on average) compared with low cosmic ray flux, (i) the chance of an overcast day increases by (19 +/- 4)%; and (ii) the diffuse fraction increases by (2 +/- 0.3)%. During sudden transient reductions in cosmic rays (e.g. Forbush events), simultaneous decreases occur in the diffuse fraction. The diffuse radiation changes are; therefore; unambiguously due to cosmic rays. Although the statistically significant nonlinear cosmic ray effect is small, it will have a considerably larger aggregate effect on longer timescale (e.g. centennial) climate variations when day-to-day variability averages out.