532 resultados para Corrective shoeing
Resumo:
A recent Australian survey of beginning teachers indicates that issue of classroom management continues to be a key concern for early career educators (Australian Education Union, 2007). This finding is supported by the wider literature that identifies managing the classroom, particularly managing behaviour within the classroom, as critical issues for early career teachers (Arends, 2006; Charles, 2004; Groundwater-Smith, Ewing & Le Cornu, 2007). In fact, struggling to manage student behaviour and maintain positive relationships with students are among the top reasons for teachers leaving the teaching profession (Charles, 2004). So, how does a teacher effectively organise and manage up to thirty students learning and behaviour at any one time? The issue of classroom management is a persistent one for all teachers, but is particularly daunting for new teachers. Historically, classrooms were established on strong hierarchical structures that relied heavily on teacher control and authority. However, more recent approaches to managing the classroom are proactive and more collaborative. That is not to say that there exists a single management recipe, far from it. Beginning teachers must view possible approaches to managing the classroom in light of their own beliefs about teaching and learning, their current classroom practice and variables from the context in which they are teaching.
Resumo:
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.
Resumo:
As part of a decision making process, the controlling process in construction companies can be supported by computer application that provides faster and reliable decision. This paper discusses the development of a knowledge-based decision support system for controlling construction companies’ business performance. The knowledge-base was developed using questionnaire survey and case studies. A questionnaire survey was conducted to identify potential problems that can occur in construction companies as well as the source of the problems and their impact on companies’ performance. Case studies were used to identify and analyse various corrective actions. The result of the study shows that decision support system using knowledge-based management system improves the effectiveness and the efficiency of decision making process for selecting the most appropriate corrective action that can improve construction companies’ performance. The application, which had been developed in this research, was designed to support the process of controlling construction companies’ business performance and to assist young manager in selecting the most optimum corrective actions for the problems related to achieving companies’ objectives. This computer application can be used as a learning tool for identifying potential problems that a construction company faces and the most optimum corrective action.
Resumo:
When complex projects go wrong they can go horribly wrong with severe financial consequences. We are undertaking research to develop leading performance indicators for complex projects, metrics to provide early warning of potential difficulties. The assessment of success of complex projects can be made by a range of stakeholders over different time scales, against different levels of project results: the project’s outputs at the end of the project; the project’s outcomes in the months following project completion; and the project’s impact in the years following completion. We aim to identify leading performance indicators, which may include both success criteria and success factors, and which can be measured by the project team during project delivery to forecast success as assessed by key stakeholders in the days, months and years following the project. The hope is the leading performance indicators will act as alarm bells to show if a project is diverting from plan so early corrective action can be taken. It may be that different combinations of the leading performance indicators will be appropriate depending on the nature of project complexity. In this paper we develop a new model of project success, whereby success is assessed by different stakeholders over different time frames against different levels of project results. We then relate this to measurements that can be taken during project delivery. A methodology is described to evaluate the early parts of this model. Its implications and limitations are described. This paper describes work in progress.
Resumo:
There is little evidence that workshops alone have a lasting impact on the day-to-day practice of participants. The current paper examined a strategy to increase generalization and maintenance of skills in the natural environment using pseudo-patients and immediate performance feedback to reinforce skills acquisition. A random half of pharmacies (N=30) took part in workshop training aimed at optimizing consumers' use of nonprescription analgesic products. Pharmacies in the training group also received performance feedback on their adherence to the recommended protocol. Feedback occurred immediately after a pseudo-patient visit in which confederates posed as purchasers of analgesics, and combined positive and corrective elements. Trained pharmacists were significantly more accurate at identifying people who misused the medication (P<0.001). The trained pharmacists were more likely than controls to use open-ended questions (P<0.001), assess readiness to change problematic use (P <0.001), and to deliver a brief intervention that was tailored to the person's commitment to alter his/her usage (P <0.001). Participants responded to the feedback positively. Results were consistent with the hypothesis that when workshop is combined with on-site performance feedback, it enhances practitioners' adherence to protocols in the natural setting.
Resumo:
Objectives: As the population ages, more people will be wearing presbyopic vision corrections when driving. However, little is known about the impact of these vision corrections on driving performance. This study aimed to determine the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections.----- Methods: A questionnaire was developed and piloted that included a series of items regarding difficulties experienced while driving under daytime and night-time conditions (rated on five-point and seven-point Likert scales). Participants included 255 presbyopic patients recruited through local optometry practices. Participants were categorized into five age-matched groups; including those wearing no vision correction for driving (n = 50), bifocal spectacles (n = 54), progressive spectacles (n = 50), monovision contact lenses (n = 53), and multifocal contact lenses (n = 48).----- Results: Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, multifocal contact lens wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly regarding disturbances from glare and haloes. Progressive spectacle lens wearers noticed more distortion of peripheral vision, whereas bifocal spectacle wearers reported more difficulties with tasks requiring changes of focus and those who wore no optical correction for driving reported problems with intermediate and near tasks. Overall, satisfaction was significantly higher for progressive spectacles than bifocal spectacles for driving.----- Conclusions: Subjective visual experiences of different presbyopic vision corrections when driving vary depending on the vision tasks and lighting level. Eye-care practitioners should be aware of the driving-related difficulties experienced with each vision correction type and the need to select corrective types that match the driving needs of their patients.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
Poor workplace relations are an issue of concern in many workplaces and this phenomenon is not restricted to the nursing profession. The issue of workplace violence in nursing is well documented and there are an increasing number of studies which have investigated the notion of horizontal violence amongst graduate nurses. The impact that poor workplace relations has on the development of a professional identity by nursing students in the off-campus clinical setting is significant in light of the current global shortage of nurses. There is a dearth of knowledge in understanding how Australian undergraduate nursing students experience the off-campus clinical setting and subsequently develop a professional identity as a nurse. Therefore the aim of this study was to discover and describe the phenomena in order to develop a substantive theory that explains the experiences of the undergraduate nursing students in a regional setting. Constructivist grounded theory methods were utilised in the conduct of the study. A sample of 29 participants was recruited permitting the formulation of a substantive theory regarding the development of a professional identity in nursing students. This substantive theory contributes knowledge relevant to the undergraduate nursing students, nurse educators, nursing workforce planners, and the tertiary educational institutions offering nursing. This is achieved through discovering, describing and explaining the phenomenon of ‘anxiety’ which the nursing students experience as a result of the interrelationship and interactions of tradition bearing, staff and student performance. These interactions intersect to form expectations of where the student fits within the hierarchy of the facility and the nursing profession in general. An understanding of the issues associated with tradition bearing, staff performance, and student performance and the impact that the interaction of these conditions has upon the student’s developing professional identity as a nurse is necessary to allow for the implementation of corrective strategies.
Resumo:
At the Mater Children’s Hospital, approximately 80% of patients presenting with Adolescent Idiopathic Scoliosis requiring corrective surgery receive a fulcrum bending radiograph. The fulcrum bending radiograph provides a measurement of spine flexibility and a better indication of achievable surgical correction than lateral-bending radiographs (Cheung and Luk, 1997; Hay et al 2008). The magnitude and distribution of the corrective force exerted by the bolster on the patient’s body is unknown. The objective of this pilot study was to measure, for the first time, the forces transmitted to the patient’s ribs through the bolster during the fulcrum bending radiograph.
Resumo:
Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.
Resumo:
Studies indicate project success should be viewed from the different perspectives of the individual stakeholders. Project managers are owner’s agents. In order to allow early corrective actions to take place in case a project is diverted from plan, to accurately report perceived success of the stakeholders by project managers is essential, though there has been little systematic research in this area. The aim of this paper is to report the findings of an empirical study that compares the level of alignment between project managers and key stakeholders on a list of project performance indicators. A telephone survey involving 18 complex project managers and various key project stakeholder groups was conducted in this study. Krippendorff’s Kappa alpha reliability test was used to assess the alignment levels between project managers and stakeholders. Despite the overall agreement level between project manager and stakeholders is only medium; results have also identified 12 performance indicators that have significant level of agreement between project managers and stakeholders.
Resumo:
Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45 degree.
Resumo:
Scoliosis is a spinal deformity that requires surgical correction in progressive cases. In order to optimize surgical outcomes, patient-specific finite element models are being developed by our group. In this paper, a single rod anterior correction procedure is simulated for a group of six scoliosis patients. For each patient, personalised model geometry was derived from low-dose CT scans, and clinically measured intra-operative corrective forces were applied. However, tissue material properties were not patient-specific, being derived from existing literature. Clinically, the patient group had a mean initial Cobb angle of 47.3 degrees, which was corrected to 17.5 degrees after surgery. The mean simulated post-operative Cobb angle for the group was 18.1 degrees. Although this represents good agreement between clinical and simulated corrections, the discrepancy between clinical and simulated Cobb angle for individual patients varied between -10.3 and +8.6 degrees, with only three of the six patients matching the clinical result to within accepted Cobb measurement error of +-5 degrees. The results of this study suggest that spinal tissue material properties play an important role in governing the correction obtained during surgery, and that patient-specific modelling approaches must address the question of how to prescribe patient-specific soft tissue properties for spine surgery simulation.
Resumo:
Studies indicate project success should be viewed from the different perspectives of the individual stakeholders. Project managers are owner’s agents. In order to allow early corrective actions to take place in case a project is diverted from plan, to accurately report perceived success of the stakeholders by project managers is essential, though there has been little systematic research in this area. The aim of this paper is to report the fi ndings of an empirical study that compares the level of agreement between project managers and key stakeholders on a list of project performance indicators. A telephone survey involving 18 complex project managers and various key project stakeholder groups was conducted in this study. Krippendorff’s Kappa alpha reliability test was used to assess the agreement level between project managers and stakeholders. While the overall agreement level between project manager and stakeholders is medium, results have also identified 12 performance indicators that have significant level of agreement between project managers and stakeholders.
Resumo:
Virtual methods to assess the fitting of a fracture fixation plate were proposed recently, however with limitations such as simplified fit criteria or manual data processing. This study aims to automate a fit analysis procedure using clinical-based criteria, and then to analyse the results further for borderline fit cases. Three dimensional (3D) models of 45 bones and of a precontoured distal tibial plate were utilized to assess the fitting of the plate automatically. A Matlab program was developed to automatically measure the shortest distance between the bone and the plate at three regions of interest and a plate-bone angle. The measured values including the fit assessment results were recorded in a spreadsheet as part of the batch-process routine. An automated fit analysis procedure will enable the processing of larger bone datasets in a significantly shorter time, which will provide more representative data of the target population for plate shape design and validation. As a result, better fitting plates can be manufactured and made available to surgeons, thereby reducing the risk and cost associated with complications or corrective procedures. This in turn, is expected to translate into improving patients' quality of life.