151 resultados para Corécepteur CCR5
Resumo:
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4(+)CD25(+) T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4(+)CD25(+)GITR(+)Foxp3(+) T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4(+), CD8(+), and CCR5(+) leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
RESUMO: O maraviroc (MVC) é o único anti-retroviral antagonista do co-receptor CCR5 licenciado e interage com as ansas transmembranares de CCR5, induzindo uma alteração da sua conformação e impedindo a interacção com gp120. O MVC é activo apenas contra estirpes R5 de HIV-1, sendo utilizado em terapia de recurso. Neste trabalho, foi estudada a diversidade genética da região C2V3C3 do gene env de estirpes de HIV-1 de oxicodependentes por via endovenosa da Grande Lisboa, pesquisando-se também a presença de polimorfismos genéticos naturais. Foram utilizadas 52 amostras de plasma e para 35 destas foi amplificado por RT-nested PCR um produto de 565 pb. A análise filogenética revelou a seguinte distribuição de genótipos: 23 B (incluindo, provavelmente, 2 CRF14_BG), 8 A, 3 G e 1 F1. Após tradução, e por comparação com a sequência consenso B, verificou-se uma elevada frequência de polimorfismos genéticos, sendo encontradas algumas “assinaturas de aminoácidos” relativas aos subtipos não-B. Realizou-se ainda uma pesquisa de locais de N-glicosilação e a previsão da utilização de co-receptores (abordagem genotípica), com recurso às regras 11/25 e da carga líquida da ansa V3 e aos programas PSSM e geno2pheno[coreceptor]. Observou-se uma conservação genérica do número de locais de N-glicosilação e foram identificadas 5 sequências com tropismo X4 ou duplo. Por fim, com base na literatura, realizou-se uma pesquisa de polimorfismos genéticos associados a resistência ao MVC presentes na ansa V3. Foi observado um número elevado destas mutações. A presença dos padrões 11S+26V e 20F+25D+26V, num total de 3 sequências, é relevante, visto estes estarem inequivocamente associados à resistência in vivo ao MVC. Apesar de não estar ainda definido um perfil de resistência para o MVC, a presença das mutações encontradas, em indivíduos sem contacto prévio com o fármaco, trará implicações relevantes na sua gestão clínica, considerando a introdução do MVC na terapia de recurso.---------- ABSTRACT: Maraviroc (MVC) is the only CCR5 inhibitor licensed today. This drug interacts with the transmembrane helices of CCR5 co-receptor, inducing a conformation change of its extracellular loops and preventing the interaction with gp120. MVC is only active against R5 strains of HIV-1 and is currently used in salvage therapy. The genetic diversity of the env C2V3C3 region of HIV-1 strains from injecting drug users in the Greater Lisbon was studied, along with the presence of natural genetic polymorphisms. 52 plasma samples were used and the amplification by RT-nested PCR of a 565 bp-product was possible in 35 of them. The phylogenetic analysis revealed 23 sequences classified as subtype B (probably including 2 CRF14_BG), 8 A, 3 G and 1 F1. After translation, the presence of natural genetic polymorphisms was studied by comparison to a subtype B consensus. A high frequency of genetic polymorphisms was observed and significant “amino acid signatures” were found in association with non-B subtypes. A full characterization of the N-glycosylation sites was also performed and a coreceptor prediction (genotypic approach) was accomplished using the 11/25 and the V3 net charge rules and the programs PSSM and geno2pheno[coreceptor]. The number of N-glycosylation sites was generically preserved. Five sequences were defined as X4 or dual-tropic. Based on published data, a search for genetic polymorphisms, present in V3loop, associated to MVC resistance was finally undertaken. Several of such mutations were observed, being particularly interesting the presence of the patterns 11S+26V and 20F+25D+26V, in a total of 3 sequences, since these patterns have unequivocally been associated with MVC resistance in vivo. Although a resistance profile for MVC is not yet defined, the presence of these mutations in MVC-naïve populations may have significant impact in their clinical management in the future, especially considering the introduction of this drug in salvage therapy.
Resumo:
The clinical application of CCR5 antagonists involves first determining the coreceptor usage by the infecting viral strain. Bioinformatics programs that predict coreceptor usage could provide an alternative method to screen candidates for treatment with CCR5 antagonists, particularly in countries with limited financial resources. Thus, the present study aims to identify the best approach using bioinformatics tools for determining HIV-1 coreceptor usage in clinical practice. Proviral DNA sequences and Trofile results from 99 HIV-1-infected subjects under clinical monitoring were analyzed in this study. Based on the Trofile results, the viral variants present were 81.1% R5, 21.4% R5X4 and 1.8% X4. Determination of tropism using a Geno2pheno[coreceptor] analysis with a false positive rate of 10% gave the most suitable performance in this sampling: the R5 and X4 strains were found at frequencies of 78.5% and 28.4%, respectively, and there was 78.6% concordance between the phenotypic and genotypic results. Further studies are needed to clarify how genetic diversity amongst virus strains affects bioinformatics-driven approaches for determining tropism. Although this strategy could be useful for screening patients in developing countries, some limitations remain that restrict the wider application of coreceptor usage tests in clinical practice.
Resumo:
The human immunodeficiency virus replication cycle begins by sequential interactions between viral envelope glycoproteins with CD4 molecule and a member of the seven-transmembrane, G-protein-coupled, receptors' family (coreceptor). In this report we focused on the contribution of CCR8 as alternative coreceptor for HIV-1 and HIV-2 isolates. We found that this coreceptor was efficiently used not only by HIV-2 but particularly by HIV-1 isolates. We demonstrate that CXCR4 usage, either alone or together with CCR5 and/or CCR8, was more frequently observed in HIV-1 than in HIV-2 isolates. Directly related to this is the finding that the non-usage of CXCR4 is significantly more common in HIV-2 isolates; both features could be associated with the slower disease progression generally observed in HIV-2 infected patients. The ability of some viral isolates to use alternative coreceptors besides CCR5 and CXCR4 could further impact on the efficacy of entry inhibitor therapy and possibly also in HIV pathogenesis.
Resumo:
BACKGROUND: The baseline susceptibility of primary HIV-2 to maraviroc (MVC) and other entry inhibitors is currently unknown. METHODS: The susceptibility of 19 HIV-2 isolates obtained from asymptomatic and AIDS patients and seven HIV-1 clinical isolates to the fusion inhibitors enfuvirtide (ENF) and T-1249, and to the coreceptor antagonists AMD3100, TAK-779 and MVC, was measured using a TZM-bl cell-based assay. The 50% inhibitory concentration (IC(50)), 90% inhibitory concentration (IC(90)) and dose-response curve slopes were determined for each drug. RESULTS: ENF and T-1249 were significantly less active on HIV-2 than on HIV-1 (211- and 2-fold, respectively). AMD3100 and TAK-779 inhibited HIV-2 and HIV-1 CXCR4 tropic (X4) and CCR5 tropic (R5) variants with similar IC(50) and IC(90) values. MVC, however, inhibited the replication of R5 HIV-2 variants with significantly higher IC(90) values (42.7 versus 9.7 nM; P<0.0001) and lower slope values (0.7 versus 1.3; P<0.0001) than HIV-1. HIV-2 R5 variants derived from AIDS patients were significantly less sensitive to MVC than variants from asymptomatic patients, this being inversely correlated with the absolute number of CD4(+) T-cells. CONCLUSIONS: T-1249 is a potent inhibitor of HIV-2 replication indicating that new fusion inhibitors might be useful to treat HIV-2 infection. Coreceptor antagonists TAK-779 and AMD3100 are also potent inhibitors of HIV-2 replication. The reduced sensitivity of R5 variants to MVC, especially in severely immunodeficient patients, indicates that the treatment of HIV-2-infected patients with MVC might require higher dosages than those used in HIV-1 patients, and should be adjusted to the disease stage.
Resumo:
Los linfocitos T-CD4+ llamados helper (LTH) o cooperadores, componen una población heterogénea de células constituidas por LTH naive y células efectoras: TH1, TH2, TH17, TH1/TH17 y células regulatorias LT reguladores (T-reg). Ellas desempeñan un rol central en la defensa inmune y adquieren distintas propiedades funcionales en respuesta a señales que genera el sistema inmune innato. Los TH17 cumplen un rol crítico en la interrelación entre la inmunidad innata y adaptativa, en la inflamación crónica y en el mantenimiento de la esterilidad de la mucosa gastrointestinal. La infección por el virus de la inmunodeficiencia humana (VIH-1) se caracteriza por una gradual y progresiva disfunción del sistema inmune, con su consecuencia final el Síndrome de Inmuno Deficiencia Adquirida (SIDA). La infección viral involucra la interacción de proteínas virales con la molécula de superficie celular CD4 y el receptor de quimiocinas CCR5 o CXCR4. Nuestro objetivo es evaluar cualitativamente y cuantitativamente los TH17 en relación con los subtipos de LTH en pacientes con infección por VIH-1 en distintos estadios de la infección y correlacionarlos con la clínica del paciente. Para ello se estudiarán individuos con infección por VIH-1 en distintos estadios de la infección sin tratamiento antirretroviral a los que se evaluarán cuantitativamente los niveles de LTH y las subpoblaciones TH17, TH1 y Treg. Además, se estudiarán las características funcionales de los TH17 cuantificando los niveles de IL-17, IL-10 e INF-γ en suero y sobrenadante de cultivos celulares y los niveles de granulocitos. La evaluación de los TH17, en relación con la etapa inmune, virológica y con la clínica del paciente nos permitirá detectar subgrupos de pacientes y nuevos marcadores de progresión de la enfermedad.
Resumo:
Los linfocitos T-CD4+ llamados helper (LTh) o cooperadores, componen una población heterogénea de células constituidas por LTh naive y células efectoras: Th1, Th2, Th17, Th1/Th17 y células regulatorias LT reguladores (T-reg). Ellos desempeñan un rol central en la defensa inmune y adquieren distintas propiedades funcionales en respuesta a señales que genera el sistema inmune innato. Los Th17 cumplen un rol crítico en la interrelación entre la inmunidad innata y adaptativa, en la inflamación crónica y en el mantenimiento de la esterilidad de la mucosa gastrointestinal. La infección por el virus de la inmunodeficiencia humana (VIH-1) se caracteriza por una gradual y progresiva disfunción del sistema inmune, con su consecuencia final el Síndrome de Inmuno Deficiencia Adquirida (SIDA). La infección viral involucra la interacción de proteínas virales con la molécula de superficie celular CD4 y el receptor de quimiocinas CCR5 o CXCR4. Nuestro objetivo es evaluar cualitativamente y cuantitativamente los Th17 en relación con los subtipos de LTh en pacientes con infección por VIH-1 en distintos estadios de la infección y correlacionarlos con la clínica del paciente. Para ello se estudiarán individuos con infección por VIH-1 en distintos estadios de la infección sin tratamiento antirretroviral a los que se evaluarán cuantitativamente los niveles de LTh y las subpoblaciones Th17, Th1 y Treg. Además, se estudiarán las características funcionales de los TH17 cuantificando los niveles de IL-17, IL10 e INF-G; en suero y sobrenadante de cultivos celulares y los niveles de granulocitos. La evaluación de los Th17, en relación con el fase inmune, virológico y con la clínica del paciente nos permitirá detectar subgrupos de pacientes y nuevos marcadores de progresión de la enfermedad.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Resumo:
BACKGROUND: The CCR5 receptor, expressed on Th1 cells, may influence clinical outcomes of HCV infection. We explored a possible link between a CCR5 32-base deletion (CCR5delta32), resulting in the expression of a non-functioning receptor, and clinical outcomes of HCV infection. METHODS: CCR5 and HCV-related phenotypes were analysed in 1,290 chronically infected patients and 160 patients with spontaneous clearance. RESULTS: Carriage of the CCR5delta32 allele was observed in 11% of spontaneous clearers compared to 17% of chronically infected patients (OR = 0.59, 95% CI interval 0.35-0.99, P = 0.047). Carriage of this allele also tended to be observed more frequently among patients with liver inflammation (19%) compared to those without inflammation (15%, OR = 1.38, 95% CI interval 0.99-1.95, P = 0.06). The CCR5delta32 was not associated with sustained virological response (P = 0.6), fibrosis stage (P = 0.8), or fibrosis progression rate (P = 0.4). CONCLUSIONS: The CCR5delta32 allele appears to be associated with a decreased rate of spontaneous HCV eradication, but not with hepatitis progression or response to antiviral therapy.
Resumo:
BACKGROUND:HIV-1-infected patients vary considerably by their response to antiretroviral treatment, drug concentrations in plasma, toxic events, and rate of immune recovery. This variability could have a genetic basis. We did a pharmacogenetics study to analyse the association between response to antiretroviral treatment and allelic variants of several genes. METHODS:In 123 patients, we did PCR analyses of the gene for the multidrug-resistance transporter (MDR1), which codes for P-glycoprotein, of genes coding for isoenzymes of cytochrome P450, CYP3A4, CYP3A5, CYP2D6, and CYP2C19, and of the gene for the chemokine receptor CCR5. We measured concentrations in plasma of the antiretroviral agents efavirenz and nelfinavir by high-performance liquid-chromatography, and measured levels of P-glycoprotein expression, CD4-cell count, and HIV-1 viraemia. FINDINGS: Median drug concentrations in patients with the MDR1 3435 TT, CT, and CC genotypes were at the 30th, 50th, and 75th percentiles, respectively (p=0.0001). In patients with CYP2D6 extensive-metaboliser or poor-metaboliser alleles, median drug concentrations were at percentiles 45 and 62.5, respectively (p=0.04). Patients with the MDR1 TT genotype 6 months after starting treatment had a greater rise in CD4-cell count (257 cells/microL) than patients with the CT (165 cells/microL) and CC (121 cells/microL) genotype (p=0.0048), and the best recovery of naïve CD4-cells. INTERPRETATION:The polymorphism MDR1 3435 C/T predicts immune recovery after initiation of antiretroviral treatment. This finding suggests that P-glycoprotein has an important role in admittance of antiretroviral drugs to restricted compartments in vivo.
Resumo:
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.
Resumo:
Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population.
Resumo:
The comprehension of the pathogenesis of Trypanosoma cruzi-elicited myocarditis is crucial to delineate new therapeutic strategies aiming to ameliorate the inflammation that leads to heart dysfunction, without hampering parasite control. The augmented expression of CCL5/RANTES and CCL3/MIP-1alpha, and their receptor CCR5, in the heart of T. cruzi-infected mice suggests a role for CC-chemokines and their receptors in the pathogenesis of T. cruzi-elicited myocarditis. Herein, we discuss our recent results using a CC-chemokine receptor inhibitor (Met-RANTES), showing the participation of CC-chemokines in T. cruzi infection and unraveling CC-chemokine receptors as an attractive therapeutic target for further evaluation in Chagas disease.
Resumo:
Chemokines are a superfamily of low-molecular-weight cytokines that were initially described for their chemoattractant activity. It is now clear chemokines have several other activities that modulate immune processes. More than 50 chemokines ligands and at least 19 receptors have been described to date. Depending on the number of N-terminal cysteine residues, chemokines are grouped in the subfamilies CXC, CC, C or CX3C. A growing body of evidence suggests a role for chemokines in the pathogenesis of several inflammatory diseases. Our studies involving mice and humans infected with Schistosoma mansoni suggest an important role of the chemokine CCL3 and its receptors (CCR1 and CCR5) in the pathogenesis of severe schistosomiasis. We suggest that the differential activation of CCR1 or CCR5 during the course of schistosomiasis may dictate the outcome of the disease.