995 resultados para Copper Metallography--Phase Diagrams
Resumo:
The Cluster Variation Method (CVM), introduced over 50 years ago by Prof. Dr. Ryoichi Kikuchi, is applied to the thermodynamic modeling of the BCC Cr-Fe system in the irregular tetrahedron approximation, using experimental thermochemical data as initial input for accessing the model parameters. The results are checked against independent data on the low-temperature miscibility gap, using increasingly accurate thermodynamic models, first by the inclusion of the magnetic degrees of freedom of iron and then also by the inclusion of the magnetic degrees of freedom of chromium. It is shown that a reasonably accurate description of the phase diagram at the iron-rich side (i.e. the miscibility gap borders and the Curie line) is obtained, but only at expense of the agreement with the above mentioned thermochemical data. Reasons for these inconsistencies are discussed, especially with regard to the need of introducing vibrational degrees of freedom in the CVM model. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The thermodynamic assessment of an Al(2)O(3)-MnO pseudo-binary system has been carried out with the use of an ionic model. The use of the electro-neutrality principles in addition to the constitutive relations, between site fractions of the species on each sub-lattice, the thermodynamics descriptions of each solid phase has been determined to make possible the solubility description. Based on the thermodynamics descriptions of each phase in addition to thermo-chemical data obtained from the literature, the Gibbs energy functions were optimized for each phase of the Al(2)O(3)-MnO system with the support of PARROT(R) module from ThemoCalc(R) package. A thermodynamic database was obtained, in agreement with the thermo-chemical data extracted from the literature, to describe the Al(2)O(3)-MnO system including the solubility description of solid phases. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pothomorphe umbellata is a native plant widely employed in the Brazilian popular medicine. This plant has been shown to exert a potent antioxidant activity on the skin and to delay the onset and reduce the incidence of UVB-induced skin damage and photoaging. The aim of this work was to optimize the appearance, the centrifuge stability and the permeation of emulsions containing R umbellata (0. 1% 4-nerolidylchatecol). Experimental design was used to study ternary mixtures models with constraints and graphical representation by phase diagrams. The constraints reduce the possible experimental domain, and for this reason, this methodology offers the maximum information while requiring the minimum investment. The results showed that the appearance follows a linear model, and that the aqueous phase was the principal factor affecting the appearance; the centrifuge stability parameter followed a mathernatic quadratic model and the interactions between factors produced the most stable emulsions; skin permeation was improved by the oil phase, following a linear model generated by data analysis. We propose as optimized P. umbellata formulation: 68.4% aqueous phase, 26.6% oil phase and 5.0% of self-emulsifying phase. This formulation displayed an acceptable compromise between factors and responses investigated. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have grown surfactant-templated silicate films at the air-water interface using n-alkyltrimethylammonium bromide and chloride in an acid synthesis with tetraethyl orthosilicate as the silicate source. The films have been grown with and without added salt (sodium chloride, sodium bromide) and with n-alkyl chain lengths from 12 to 18, the growth process being monitored by X-ray reflectometry. Glassy, hexagonal, and lamellar structures have been produced in ways that are predictable from the pure surfactant-water phase diagrams. The synthesis appears to proceed initially through an induction period characterized by the accumulation of silica-coated spherical micelles near the surface. All syntheses, except those involving C(12)TACl, show a sudden transformation of the spherical micellar phase to a hexagonal phase. This occurs when the gradually increasing ionic strength and/or changing ethanol concentration is sufficient to change the position of boundaries within the phase diagram. A possible mechanism for this to occur may be to induce a sphere to rod transition in the micellar structure. This transformation, as predicted from the surfactant-water phase diagram, can be induced by addition of salts and is slower for chloride than bromide counteranions. The hexagonal materials change in cell dimension as the chain length is changed in a way consistent with theoretical model predictions. All the materials have sufficiently flexible silica frameworks that phase interconversion is observed both from glassy to hexagonal and from hexagonal, to lamellar and vice versa in those surfactant systems where multiple phases are found to exist.
Resumo:
We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials K-(BEDT-TTF)(2)X, The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase diagrams for each model. The Sp(N) :antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite N are also discussed. For parameters relevant to Cs2CuCl4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap, A metal-insulator transition occurs at intermediate values of the interaction strength.
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.
Resumo:
Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).
Resumo:
A new method, based on linear correlation and phase diagrams was successfully developed for processes like the sedimentary process, where the deposition phase can have different time duration - represented by repeated values in a series - and where the erosion can play an important rule deleting values of a series. The sampling process itself can be the cause of repeated values - large strata twice sampled - or deleted values: tiny strata fitted between two consecutive samples. What we developed was a mathematical procedure which, based upon the depth chemical composition evolution, allows the establishment of frontiers as well as the periodicity of different sedimentary environments. The basic tool isn't more than a linear correlation analysis which allow us to detect the existence of eventual evolution rules, connected with cyclical phenomena within time series (considering the space assimilated to time), with the final objective of prevision. A very interesting discovery was the phenomenon of repeated sliding windows that represent quasi-cycles of a series of quasi-periods. An accurate forecast can be obtained if we are inside a quasi-cycle (it is possible to predict the other elements of the cycle with the probability related with the number of repeated and deleted points). We deal with an innovator methodology, reason why it's efficiency is being tested in some case studies, with remarkable results that shows it's efficacy. Keywords: sedimentary environments, sequence stratigraphy, data analysis, time-series, conditional probability.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
This work focused on how different types of oil phase, MCT (medium chain triglycerides) and LCT (long chain triglycerides), exert influence on the gelation process of beeswax and thus properties of the organogel produced thereof. Organogels were produced at different temperatures and qualitative phase diagrams were constructed to identify and classify the type of structure formed at various compositions. The microstructure of gelator crystals was studied by polarized light microscopy. Melting and crystallization were characterized by differential scanning calorimetry and rheology (flow and small amplitude oscillatory measurements) to understand organogels' behaviour under different mechanical and thermal conditions. FTIR analysis was employed for a further understanding of oil-gelator chemical interactions. Results showed that the increase of beeswax concentration led to higher values of storage and loss moduli (G, G) and complex modulus (G*) of organogels, which is associated to the strong network formed between the crystalline gelator structure and the oil phase. Crystallization occurred in two steps (well evidenced for higher concentrations of gelator) during temperature decreasing. Thermal analysis showed the occurrence of hysteresis between melting and crystallization. Small angle X-ray scattering (SAXS) analysis allowed a better understanding in terms of how crystal conformations were disposed for each type of organogel. The structuring process supported by medium or long-chain triglycerides oils was an important exploit to apprehend the impact of different carbon chain-size on the gelation process and on gels' properties.
Resumo:
Solubility equilibria, stereoisomers, chiral systems, phase diagrams, calorimetry
Resumo:
El Grup Consolidat d’Innovació Docent de Mineralogia i òptica cristal·lina de la Universitat de Barcelona ha desenvolupat un CD interactiu que simula el funcionament d’un microscopi petrogràfic, per tal de facilitar a l’alumne un material d’autoaprenentatge, ha de servir per a reforçar els coneixements dels minerals formadors de roques en làmina prima. Aquest material te tres entrades diferents, en català, castellà i anglès. Cada mineral té una fitxa general amb les seves propietats òptiques i una complementaria amb les característiques cristal·logràfiques, camp d’estabilitat, diagrames de fases i característiques morfològiques del mineral a observar, les quals marquen els trets determinatius d’aquell mineral per tal de facilitar el seu reconeixement. Per tal de complementar les dades s’han introduït links directes amb la planes web: “webmineral” i “mindat” on hi ha les corresponents estructures i morfologies “interactives” de cadascun dels minerals que apareixen en el programa. En l’aplicació informàtica hi ha 169 filmacions corresponents a 43 dels principals minerals que formen les roques, una filmació correspon a la imatge només amb el polaritzador, i l'altre a la imatge amb el polaritzador més l'analitzador. Cadascuna d'aquestes imatges es presenta amb un gir de 360º; es pot aturar i després continuar girant, simulant el que veuríem al microscopi. D'aquesta manera es pot determinar el pleocroisme, la presència de macles, el color d'interferència i l'angle d'extinció.. S’ha intentat sempre que hi hagués diferents exemples d’un mateix mineral en diverses paragènesis. També s'incorpora una fitxa que l'usuari pot omplir amb les característiques texturals i òptiques del mineral agrupades segons les observacions que es fan, bé amb el polaritzador, amb el polaritzador i l'analitzador o bé amb les condicions específiques per veure la figura d'interferència i el signe òptic. Aquesta fitxa, un cop plena, es pot imprimir. En tot moment hi ha un menú d’ajuda on l’usuari pot remetre i fer la consulta adient per poder continuar.
Resumo:
Recent studies have indicated that gamma band oscillations participate in the temporal binding needed for the synchronization of cortical networks involved in short-term memory and attentional processes. To date, no study has explored the temporal dynamics of gamma band in the early stages of dementia. At baseline, gamma band analysis was performed in 29 cases with mild cognitive impairment (MCI) during the n-back task. Based on phase diagrams, multiple linear regression models were built to explore the relationship between the cognitive status and gamma oscillation changes over time. Individual measures of phase diagram complexity were made using fractal dimension values. After 1 year, all cases were assessed neuropsychologically using the same battery. A total of 16 MCI patients showed progressive cognitive decline (PMCI) and 13 remained stable (SMCI). When adjusted for gamma values at lag -2, and -3 ms, PMCI cases displayed significantly lower average changes in gamma values than SMCI cases both in detection and 2-back tasks. Gamma fractal dimension of PMCI cases displayed significantly higher gamma fractal dimension values compared to SMCI cases. This variable explained 11.8% of the cognitive variability in this series. Our data indicate that the progression of cognitive decline in MCI is associated with early deficits in temporal binding that occur during the activation of selective attention processes.