980 resultados para Coordination chemistry
Resumo:
Two new hydrazinium complexes of manganese, (N2H5)3MnX5 (X = Cl and Br), have been prepared and characterized by analysis, infrared and visible spectra. The single crystal X-ray structure of the chloride complex has been determined. Only one of the three N2H+5 cations is coordinated to the metal. In the anion, [Mn(N2H5)Cl5]2-, the coordination polyhedron around the manganese atom is a slightly distorted octahedron.
Resumo:
Dinuclear complexes containing a (mu-oxo)bis(mu-carboxylato) diruthenium (III) core have been prepared by a novel synthetic route using metal-metal bonded diruthenium(II,III) tetracarboxylates as precursors. The complexes have been structurally characterized and they are redox active. The terminal ligands play an important role in tuning the electronic structure of the core. The stability of the core is found to be dependent on the size and pi-acidic nature of the terminal ligand cis- to the mu-oxo ligand. The chemistry of such tribridged complexes is relatively new. The rapid growth of this chemistry is based on the discovery of similar core structures in several non-heme iron- and manganese-containing metalloproteins. The tribridged core presents a new structural motif in coordination chemistry. The chemistry of diruthenium complexes with a [Ru-2(mu-O) (mu-O(2)CR)(2)(2+)] core has been reviewed.
Resumo:
Asymmetrically dibridged dicopper(II) complexes, [Cu-2(OH)(O2CC6H4-p-Me)(tmen)(2)(H2O)](ClO4)(2) (1) and [Cu-2(OH)(O2CC6H4-p-OMe)(tmen)(2)(H2O)](ClO4)(2) (2) (tmen = N,N,N',N'-tetramethylethane-1,2-diamine), were prepared and structurally characterized. Complex 1 crystallizes in the monoclinic space group P2(1)/a with a = 17.718(2), b = 9.869(1), c = 19.677(2) Angstrom, beta = 115.16(1)degrees, V = 3114.3(6) Angstrom(3) and Z = 4. The structure was refined to R(wR(2)) = 0.067(0.178). Complex 2 crystallizes in the monoclinic space group P2(1)/a with a = 17.695(3), b = 9.574(4), c = 20.104(2) Angstrom, beta = 114.18(1)degrees, V = 3107(1) Angstrom(3) and Z = 4. The final residuals are R(wR(2)) = 0.067(0.182). The complexes have a [Cu-2(mu-OH)(mu-OH)(mu-O2CAr)](2+) core with tmen Ligands occupying the terminal sites of the core. In addition, one copper is axially bound to a water molecule. The Cu ... Cu distances and the Cu-OH Cu angles in the core are 3.394(1) Angstrom, 124.4(2)degrees for 1 and 3.374(1) Angstrom, 123.3(3)degrees for 2. The complexes show axial X-band EPR spectral features in methanol glass at 77 K giving g(perpendicular to) = 2.02, g(parallel to) = 2.3 (A(parallel to) = 165 x 10(-4) cm(-1)) and a visible band near similar to 630 nm in methanol. The complexes are weakly antiferromagnetic. A theoretical fit of the magnetic susceptibility data in the temperature range 40-295 K gives -J = 10 cm(-1), g = 2.05 for 1 and -J = 10 cm(-1), g = 2.0 for 2. Plots of -2J versus the Cu-OH-Cu angle (phi) in this class of asymmetrically dibridged dicopper(II) complexes having d(x2-y2)-d(x2-y2) magnetic orbitals show a linear magneto-structural correlation: -2J(cm(-1)) = 11.48 phi(deg) - 1373.
Resumo:
The single-crystal X-ray structure of a cation-templated manganese-oxalate coordination polymer [NH(C2H5)(3)][Mn-2(ox)(3)]center dot(5H(2)O)] (1) is reported. In 1, triethylammonium cation is entrapped between the cavities of 2-D honeycomb layers constructed by oxalate and water. The acyclic tetrameric water clusters and discrete water assemble the parallel 2-D honeycomb oxalate layers via an intricate array of hydrogen bonds into an overall 3-D network. The magnetic susceptibility, with and without the water cluster, are reported with infrared and EPR studies.
Resumo:
A zinc-nicotinate complex has been prepared by direct reaction of zinc acetate and nicotinic acid in the presence of template tetramethylethylenediamine and is characterized by elemental analysis, FTIR, and TGA/DTA. The Zn complex was a precursor for the synthesis of ZnO nanoparticles. A correlation of the thermal and spectral properties of the precursor complex with its structure has been discussed. Thermolysis under air was studied by thermogravimetry, and the resulting ZnO product was characterized by XRD and TEM, showing compact particles with a diameter of about 1750nm.
Resumo:
Two Schiff base metal complexes Cu-SPETNNO3 (1) and Ni-SPETNNO3 (2) SPETN=2,2-propane,1,3-diylbis(nitrilomethyldyne)pyridyl,phenolate] ] with hydrogen bonding groups have been synthesized and characterized by single-crystal X-ray diffraction. In both of the compounds nitrates occupy a crystallographic general position. In 1 the lattice nitrates are on the 2(1) screw axis while in 2 they are at the crystallographic inversion center. C-HOnitrate synthons (formed by the nitrate anions and peripheral hydrogen bonding groups of the metal complexes) are non-covalent building blocks in molecular-assembly and packing of the cationic Schiff base metal complexes (M=Ni2+, Cu2+), resulting in 2-D hydrogen bonded networks. The CuCu non-bonding contact in 1 is 3.268 angstrom while the Ni-Ni bonding distance in 2 is 3.437 angstrom.
Resumo:
A series of mononuclear five-coordinate cobalt(II) complexes, Co(dbdmp)(X)]Y, where dbdmp=N,N-diethyl-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1, 2-diamine, X=N-3(-)/NCO-/NCS- and Y=PF6-/BF4-/ClO4-, have been synthesized and characterized by microanalyses and spectroscopic techniques. Crystal structures of Co(N-3)(dbdmp)]PF6 (1), Co(N-3)(dbdmp)]ClO4 (3), Co(NCO)(dbdmp)]PF6 (4), Co(NCO)(dbdmp)]ClO4 (6), and Co(NCS)(dbdmp)]ClO4 (9) have been solved by single-crystal X-ray diffraction studies and showed that all the complexes have distorted trigonal bipyramidal geometry; PF6- counter anion containing complexes Co(N-3)(dbdmp)]PF6 and Co(NCO)(dbdmp)]PF6 have chiral space groups. The binding ability of synthesized complexes with CT-DNA and bovine serum albumin (BSA) has been studied by spectroscopic methods and viscosity measurements. The experimental results of absorption titration of cobalt(II) complexes with CT-DNA indicate that the complexes have ability to form adducts and they can stabilize the DNA helix. The cobalt(II) complexes exhibit good binding propensity to BSA protein.
Resumo:
Understanding and catalyzing chemical reactions requiring multiple electron transfers is an endeavor relevant to many outstanding challenges in the field of chemistry. To study multi-electron reactions, a terphenyl diphosphine framework was designed to support one or more metals in multiple redox states via stabilizing interactions with the central arene of the terphenyl backbone. A variety of unusual compounds and reactions and their relevance toward prominent research efforts in chemistry are the subject of this dissertation.
Chapter 2 introduces the para-terphenyl diphosphine framework and its coordination chemistry with group 10 transition metal centers. Both mononuclear and dinuclear compounds are characterized. In many cases, the metal center(s) are stabilized by the terphenyl central arene. These metal–arene interactions are characterized both statically, in the solid state, and fluxionally, in solution. As a proof-of-principle, a dinickel framework is shown to span multiple redox states, showing that multielectron chemistry can be supported by the coordinatively flexible terphenyl diphosphine.
Chapter 3 presents reactivity of the terphenyl diphosphine when bound to a metal center. Because of the dearomatizing effect of the metal center, the central arene of the ligand is susceptible to reactions that do not normally affect arenes. In particular, Ni-to-arene H-transfer and arene dihydrogenation reactions are presented. Additionally, evidence for reversibility of the Ni-to-arene H-transfer is discussed.
Chapter 4 expands beyond the chelated metal-arene interactions of the previous chapters. A dipalladium(I) terphenyl diphosphine framework is used to bind a variety of exogenous organic ligands including arenes, dienes, heteroarenes, thioethers, and anionic ligands. The compounds are structurally characterized, and many ligands exhibit unprecedented bindng modes across two metal centers. The relative binding affinities are evaluated spectroscopically, and equilibrium binding constants for the examined ligands are determined to span over 13 orders of magnitude. As an application of this framework, mild hydrogenation conditions of bound thiophene are presented.
Chapter 5 studies nickel-mediated C–O bond cleavage of aryl alkyl ethers, a transformation with emerging applications in fields such as lignin biofuels and organic methodology. Other group members have shown the mechanism of C–O bond cleavage of an aryl methyl ether incorporated into a meta-terphenyl diphosphine framework to proceed through β-H elimination of an alkoxide. First, the electronic selectivity of the model system is examined computationally and compared with catalytic systems. The lessons learned from the model system are then applied to isotopic labeling studies for catalytic aryl alkyl ether cleavage under dihydrogen. Results from selective deuteration experiments and mass spectrometry draw a clear analogy between the mechanisms of the model and catalytic systems that does not require dihydrogen for C–O bond cleavage, although dihydrogen is proposed to play a role in catalyst activation and catalytic turnover.
Appendix A presents initial efforts toward heterodinuclear complexes as models for CO dehydrogenase and Fischer Tropsch chemistry. A catechol-incorporating terphenyl diphosphine is reported, and metal complexes thereof are discussed.
Appendix B highlights some structurally characterized terphenyl diphosphine complexes that either do not thematically belong in the research chapters or proved to be difficult to reproduce. These compounds show unusual coordination modes of the terphenyl diphosphine from which other researchers may glean insights.
Resumo:
In order to develop better catalysts for the cleavage of aryl-X bonds fundamental studies of the mechanism and individual steps of the mechanism have been investigated in detail. As the described studies are difficult at best in catalytic systems, model systems are frequently used. To study aryl-oxygen bond activation, a terphenyl diphosphine scaffold containing an ether moiety in the central arene was designed. The first three chapters of this dissertation focus on the studies of the nickel complexes supported by this diphosphine backbone and the research efforts in regards to aryl-oxygen bond activation.
Chapter 2 outlines the synthesis of a variety of diphosphine terphenyl ether ligand scaffolds. The metallation of these scaffolds with nickel is described. The reactivity of these nickel(0) systems is also outlined. The systems were found to typically undergo a reductive cleavage of the aryl oxygen bond. The mechanism was found to be a subsequent oxidative addition, β-H elimination, reductive elimination and (or) decarbonylation.
Chapter 3 presents kinetic studies of the aryl oxygen bond in the systems outlined in Chapter 2. Using a series of nickel(0) diphosphine terphenyl ether complexes the kinetics of aryl oxygen bond activation was studied. The activation parameters of oxidative addition for the model systems were determined. Little variation was observed in the rate and activation parameters of oxidative addition with varying electronics in the model system. The cause of the lack of variation is due to the ground state and oxidative addition transition state being affected similarly. Attempts were made to extend this study to catalytic systems.
Chapter 4 investigates aryl oxygen bond activation in the presence of additives. It was found that the addition of certain metal alkyls to the nickel(0) model system lead to an increase in the rate of aryl oxygen bond activation. The addition of excess Grignard reagent led to an order of magnitude increase in the rate of aryl oxygen bond activation. Similarly the addition of AlMe3 led to a three order of magnitude rate increase. Addition of AlMe3 at -80 °C led to the formation of an intermediate which was identified by NOESY correlations as a system in which the AlMe3 is coordinated to the ether moiety of the backbone. The rates and activation parameters of aryl oxygen bond activation in the presence of AlMe3 were investigated.
The last two chapters involve the study of metalla-macrocycles as ligands. Chapter 5 details the synthesis of a variety of glyoxime backbones and diphenol precursors and their metallation with aluminum. The coordination chemistry of iron on the aluminum scaffolds was investigated. Varying the electronics of the aluminum macrocycle was found to affect the observed electrochemistry of the iron center.
Chapter 6 extends the studies of chapter 5 to cobalt complexes. The synthesis of cobalt dialuminum glyoxime metal complexes is described. The electrochemistry of the cobalt complexes was investigated. The electrochemistry was compared to the observed electrochemistry of a zinc analog to identify the redox activity of the ligand. In the presence of acid the cobalt complexes were found to electrochemically reduce protons to dihydrogen. The electronics of the ancillary aluminum ligands were found to affect the potential of proton reduction in the cobalt complexes. These potentials were compared to other diglyoximate complexes.
Resumo:
Terphenyl diphosphines bearing pendant ethers were prepared to provide mechanistic insight into the mechanism of activation of aryl C–O bonds with Group 9 and Group 10 transition metals. Chapters 2 and 3 of this dissertation describe the reactivity of compounds supported by the model phosphine and extension of this chemistry to heterogenous C–O bond activation.
Chapter 2 describes the synthesis and reactivity of aryl-methyl and aryl-aryl model systems. The metallation of these compounds with Ni, Pd, Pt, Co, Rh, and Ir is described. Intramolecular bond activation pathways are described. In the case of the aryl-methyl ether, aryl C–O bond activation was observed only for Ni, Rh, and Ir.
Chapter 3 outlines the reactivity of heterogenous Rh and Ir catalysts for aryl ether C–O bond cleavage. Using Rh/C and an organometallic Ir precursor, aryl ethers were treated with H2 and heat to afford products of hydrogenolysis and hydrogenation. Conditions were modified to optimize the yield of hydrogenolysis product. Hydrogenation could not be fully suppressed in these systems.
Appendix A describes initial investigations of bisphenoxyiminoquinoline dichromium compounds for selective C2H4 oligomerization to afford α-olefins. The synthesis of monometallic and bimetallic Cr complexes is described. These compounds are compared to literature examples and found to be less active and non-selective for production of α-olefins.
Appendix B describes the coordination chemistry of terphenyl diphosphines, terphenyl bisphosphinophenols, and biphenyl phosphinophenols proligands with molybdenum, cobalt, and nickel. Since their synthesis, terphenyl diphosphine molybdenum compounds have been reported to be good catalysts for the dehydrogenation of ammonia borane. Biphenyl phosphinophenols are demonstrated provide both phosphine and arene donors to transition metals while maintaining a sterically accessible coordination sphere. Such ligands may be promising in the context of the activation of other small molecules.
Appendix C contains relevant NMR spectra for the compounds presented in the preceding sections.
Resumo:
Comunicacion a congreso (Presentación): ICCC 40. International Conference on Coordination Chemistry. Valencia, September 09-13, 2012
Resumo:
A new class of ionophores with troponoid and thiocrown ether units was prepared. Cation-binding properties of troponoid dithiocrown ethers were characterized using UV and NMR spectroscopies. They have affinity with metal ions; in particular, they showed high affinity with Hg2+. Transport of Hg2+ through a CHCl3 liquid membrane with troponoid dithiocrown ethers was examined in a U-type cell. From an aqueous solution of HgCl2 and CuCl2, Hg2+ is transferred selectively and smoothly, while the Cu2+ remained quantitatively in the original solution. The cavity size of dithiocrown ethers is one of the requirements for effective extraction and transport of Hg2+. However, derivatives with a smaller cavity still extract and transport Hg2+. A polymer-supported troponoid dithiocrown ether was prepared to transport Hg2+ effectively and repeatedly. Comparing the troponoid dithiocrown ether with the benzenoid dithiocrown ether with a similar cavity size, the former was more effective for the transport of Hg2+. It is proposed that the tropone ring assisted the release of Hg2+ from the complex by Coulomb repulsion between the protonated tropone ring and Hg2+.
Resumo:
The novel (E,E)-dioxime, 5,6:17,18-dibenzo-11,12-(4-nitrobenzo)-2,3-bis(hydroxyimino)-7,16-dithia-10,13-dioxa-1,4-diazacyclooctadecane) (H2L), has been synthesized from reaction of (E,E)-dichloroglyoxime (1) with 2,3:14,15-dibenzo 8,9-(4-nitrobenzo)-4,13-dithia-7,10-dioxa-1,16-diazahegzadecane (2). The mononuclear Co(III) complex (4) of this dioxime was prepared by oxidation of the cobalt (II) complex. The -capped Co(III) complex (5) was synthesized by using a precursor Co(III) complex and boron trifluoride dietherate. The heterotrinuclear complexes (6) and (7) were prepared by reaction of (5) with NiCl2·6H2O and CdCl2·H2O, respectively. In addition, the homotrinuclear Cu(II) complex (8), has also been prepared by the reaction of this dioxime with CuCl2·H2O. The structures of the dioxime and its complexes were identified by using elemental analysis, 1H- and 13C-NMR, IR, and mass spectral data.
Resumo:
Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.
Resumo:
Two new copper-thiacalix[4]arene compounds, [Cu-2(1)-Cl-2(H(4)TC4A)](CH3OH) (1) and [Cu(I)2Cl(2)(H(4)PTC4A)](CH3OH)(CHCl3)(0.5) (2) (where H(4)TC4A = p-tert-butylthiacalix[4]arene and H(4)PTC4A = p-phenylthiacalix[4]arene), were synthesized by the solvothermal method in the mixed CH3OH/CHCl3 (1: 1) solvent and reassembled in air at room temperature to two other structures, [(Cu4Cl3)-Cl-II(HCO2)(TC4A)(CH3-OH)(2)(H2O)](CHCl3)(CH3OH)(2.7) (3) and [(Cu4Cl4)-Cl-II(PTC4A)(CH3OH)(4)] (4), respectively. All these four compounds were characterized by TG analyses, FTIR spectroscopy, and singlecrystal X-ray diffraction analyses. Compounds 1 and 2 feature two-dimensional layered networks, while compounds 3 and 4 are assembled by some tetranuclear units.