987 resultados para Cooling water
Resumo:
Water inflows in the Gotthard Highway Tunnel and in the Gotthard Exploration Tunnel are meteoric waters infiltrating at different elevations, on both sides of an important orographic divide. Limited interaction of meteoric waters with gneissic rocks produces Ca-HCO3 and Na-Ca-HCO3 waters, whereas prolonged interaction of meteoric waters with the same rocks generates Na-HCO3 to Na-SO4 waters. Waters circulating in Triassic carbonate-evaporite rocks have a Ca-SO4 composition. Calcium-Na-SO4 waters are also present. They can be produced through interaction of either Na-HCO3 waters with anhydrite or Ca-SO4 waters with a local gneissic rock, as suggested by reaction path modeling. An analogous simulation indicates that Na-HCO3 waters are generated through interaction of Ca-HCO3 waters with a local gneissic rock. The two main SO4-sources present in the Alps are leaching of upper Triassic sulfate minerals and oxidative dissolution of sulfide minerals of crystalline rocks. Values of delta S-34(SO4) < <similar to>+ 9 parts per thousand, are due to oxidative dissolution of sulfide minerals, whereas delta S-34(SO4) > similar to+ 9 parts per thousand are controlled either by bacterial SO4 reduction or leaching of upper Triassic sulfate minerals. Most waters have temperatures similar to the expected values for a geothermal gradient of 22 degreesC/km and are close to thermal equilibrium with rocks. However relatively large, descending flows of cold waters and ascending flows of warm waters are present in both tunnels and determine substantial cooling and heating, respectively, of the interacting rocks. The most import upflow zone of warm, Na-rich waters is below Guspisbach, in the Gotthard Highway Tunnel, at 6.2-9.0 km from the southern portal. These warm waters have equilibrium temperatures of 65-75 degreesC and therefore constitute an important low-enthalpy geothermal resource. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Abstract:During my doctoral research, I focused on deciphering the interactions between sea-level and climate change during the Late Barremian-Early Aptian, their expression in the Tethys basin and in the Helvetic carbonate platform. The research highlights are summarized here in three points: In the Helvetic Alps, the transition between the Lower Schrattenkalk (Upper Barremian) and the Rawil Member (Lowermost Aptian) is characterized by a change from a predominantly photozoan to a heterozoan carbonate-producing system, which coincides in time with a general increase in detrital and nutrient input. The clay mineral record shows the appearance of kaolinite within the Rawil Member, whereas this mineral is absent from the uppermost Lower and lowermost Upper Schrattenkalk Members. This indicates the installation of a warmer and more humid climate during this time period. A negative peak in 513C is recorded at the top of the Lower Schrattenkalk Member, and correlates with the well-known negative excursion of -l%o occurring in other basins and dated as latest Barremian, thus confirming a latest Barremian and earliest Aptian age for the Lower Schrattenkalk and Rawil Members, respectively. Furthermore, a sequence stratigraphie framework has been defined for the Rawil Member, based on both the ecology of faunal and floral assemblages, and their palaeoenvironmental interpretation, as well as on the stacking pattern of limestone beds observed during field prospection. The presence of a sequence boundary is postulated near the top of the Lower Schrattenkalk Member, which is correlated with the earliest Aptian SbAl defined in Vercors (France). The SbAl is characterized by a maximum of proximal assemblages and by the disappearance of several benthic foraminiferal species. Within the Rawil Member itself, the stacking pattern and microfacies trends are interpreted to represent the TST of the first Aptian sequence. With regards to the pelagic setting in the Tethyan realm, I investigated the Gorgo a Cerbara section (central Italy). There, thin organic-rich layers occur episodically in pelagic carbonates of the upper Barremian portion of the Maiolica Formation. They are associated with high Corg:Ptot ratios, which indicate the presence of intermittent dysoxic to anoxic conditions. Coarse correlations are also observed between TOC, Ρ and biogenic silica contents, indicating links between Ρ availability, productivity, and organic matter preservation. The corresponding 813Ccarb and δ180 records remain, however, quite stable, indicating that these brief periods of enhanced TOC preservation did not have sufficient impact on the marine carbon household to deviate 6,3C records, and are probably not the consequence of major climate change. On the other hand, organic-rich layers become more frequent around the Barremian-Aptian boundary in both pelagic and hemi-pelagic environments (Gorgo a Cerbara and La Bédoule, France), which are correlated with negative excursions in 6l3Ccarb and 613Corg records. During the earliest Aptian, at Gorgo a Cerbara, the frequency of organic-rich intervals progressively increases and redox-sensitive trace-element enrichments become more frequent, until the highest TOC-enriched level just below the "Livello Selli", indicator of Oceanic Anoxic Event la (OAEla). The latter is associated with the well-known negative spike in 613Ccarb and S,3Corg records, a diminution in the δ,80 record interpreted as the consequence of a wanning interval, an important peak in Ρ accumulation and high Cor::Ptot ratios indicating the prevalence of anoxic conditions. The Selli Level (OAEla) documents a general cooling phase and coincides with maximum RSTE enrichments as well as high Corg:Ptot ratios, which confirm the importance of anoxic conditions during OAE1 a at this site.During the Early Aptian, environmental change on the platform is expressed by orbitolinids proliferation that may be induced by both climate change and sea-level rise. In the basin, the successive black shales horizons from the Late Barremian until the OAE la are interpreted as the progressive impact of palaeoenvironmental change probably linked to the formation of the Ontong- Java plate-basalt plateau.RésuméCe travail de thèse a permis d'investiguer les interactions entre les variations du niveau marin et les changements climatiques sur la plate-forme helvétique ainsi qu'en domaine pélagique à la limite Barrémien-Aptien (Crétacé).Dans les Alpes helvétiques, la limite Barrémien-Aptien est marquée par la transition du Schrattenkalk inférieur, caractérisé par des carbonates photozaires, au Membre de Rawil caractérisé par des carbonates héterozoaires. Cette transition est marquée par une arrivée massive d'éléments détritiques et un apport de nutriments ayant entraîné la prolifération de foraminifères agglutinés tels que les orbitolines. L'analyse des minéraux argileux indique l'apparition de la kaolinite durant le Membre de Rawil, interprétée comme l'installation d'un climat plus chaud et humide. Un pic négatif en 513C est enregistré au sommet du Schrattenkalk inférieur correspond à l'excursion négative de -1%0 bien connue en domaine pélagique et datée comme Barrémien terminal. Cette corrélation apporte un contrôle chronostratigraphique supplémentaire permettant de dater le Schrattenkalk inférieur du Barrémien sup. et le Membre de Rawil de l'Aptien inf. D'autre part, une étude stratigraphique, basée sur des observations de terrain et sur l'interprétation d'assemblages floristiques et faunistiques en terme de paléoenvironnement a permis de mettre en évidence une limite de séquence au sommet du Schrattenkalk inf., corrélable avec la SbAl définie dans le Vercors. Durant la mise en place du Membre de Rawil, l'évolution des microfaciès est interprétée comme le « Transgressive System Tract » de la première séquence aptienne.En domaine pélagique, de minces couches riches en matière organique (MO) apparaissent dès le Barrémien sup. dans la coupe de Gorgo a Cerbara (Italie). Elles sont associées à un ratio C:P élevé indiquant des conditions épisodiquement dysoxiques à anoxiques. De plus, une corrélation nette entre Carbone Organique Total (TOC), phosphore (P) et silice biogénique est observée correspondant à un lien entre Ρ disponible, productivité et préservation de la MO. Pourtant, dans le même temps, le ÔI3C et le δ1βΟ restent constants indiquant des conditions environnementales stables et un cycle du carbone non perturbé par la préservation de MO qui ne serait pas la conséquence d'un changement climatique global mais juste d'un effet local.Ala limite Barrémien-Aptien, en domaine hémi-pélagique (La Bédoule, France) et pélagique (Gorgo a Cerbara), les couches riches en MO sont plus fréquentes et plus épaisses, elles se sont déposées en même temps qu'un pic négatif en 513CCARB et ô13Coib probablement dû à un épisode volcanique. A l'Aptien inf. le TOC des niveaux riches en MO augmente progressivement en même temps que la teneur en éléments traces jusqu'au dernier enrichissement avant l'événement anoxique océanique la (OAE la) correspondant au « niveau critique inf. », indiquant des conditions anoxiques moins restreintes. Celui-ci est également caractérisé par le fameux pic négatif en Ô13C (C3), une diminution du δ180 interprétée comme un réchauffement, par un pic en Ρ et un ratio C:P élevé. L'OAE 1 a, quant à lui, enregistre un refroidissement et coïncide avec le maximum en éléments traces ainsi qu'un fort ratio C:P mettant en valeur l'importance des conditions anoxiques pendant 1ΌΑΕ la dans cette coupe alors qu'aucune perturbation n'est enregistrés à La Bédoule probablement à cause de conditions paléogéographiques locales.Durant l'Aptien inf., les changements environnementaux sur la plate-forme se marquent par la prolifération d'orbitolines due à un changement climatique et une hausse du niveau marin. En domaine profond, la succession de niveaux riches en MO du Barrémien sup. jusqu'à l'OAE la documente l'impact progressif de changements paléoenvironnementaux, probablement liés à la formation du plateau d'Ontong Java à l'ouest de l'océan Pacifique.
Resumo:
Objective: Cooling is considered a panacea in burn injury. However, burn injuries are characterized by an ischemic zone prone to progression, a phenomenon that can substantially increase morbidity. Cold-induced vasoconstriction potentially aggravates ischemia and promotes progression. Therefore we compared the effect of warm (37°C) and cold (17°C) water on burn progression. Methods: The comb burn model creates 4 rectangular burned surfaces separated by 3 unburned interspaces that become necrotic if untreated. After heating in boiling water the template was applied for 60 seconds on 24 Wistar rats randomized into 3 groups: no treatment (CON); treatment for 20 minutes with cold water (17°C: CW) or warm water (37°C: WW). Burn progression in surface (planimetry) and Departmenth (histology), as well as microcirculatory perfusion (laser Doppler flowmetry) were assessed after 1h, as well as 1, 4, and 7 days. Results: Both CW and WW delayed burn progression without reducing the final burn Departmenth (deep dermis). In contrast, only WW but not CW increased dermal perfusion (81 ± 2% (WW) vs. 62 ± 2% (CW) and 63 ± 1% (CON), p< 0·05) already 1 hour after burn induction. The difference observed after one hour led to a complete flow recovery during the observation period and translated into increased interspace survival, respectively less necrosis with WW(65 ± 4% vs. 81 + 4% (CW) and 91 ± 2% (CON), p< 0·05) after 7 days. Conclusions: Application of warm water significantly improved dermal perfusion, increased interspace survival, and delayed burn progression.However it didn't alter the ultimate burn Departmenth of the actually burned area. Therefore, warm water can create a therapeutic window for targeted nonsurgical treatment of burn progression.
Resumo:
In an era of increasing concern for limited water resources a wise joint management of conventional and nonconventional water resources must be considered. Water scarcity aggravates in coastal zones which are often characterised by high population density, intense economic activity and tourism; meaning heavy seasonal water demands. The relationships between sea and land-water can also compromise the quality of available freshwater. In this context, the use of non-conventional water increases the availability of water supplies. Non-conventional water resources of low quality could be directed to meet several needs (like watering lawns, washing cars, flushing toilets and cooling systems, among others). Therefore, significantly more potable water would be available to meet human demand for safe water.
Resumo:
Iowa Department of Natural Resources commitment to improving the management of both the quantity and quality of water resources, a committee was formed to assess the current policies and practices regarding water rights and allocation, and to make recommendations that would assist the state in moving toward a sustainable future. Water allocation concerns have been raised again in the past few years as increases in the demand for water are projected due to ethanol production, geothermal heating-cooling, and potential irrigation expansion.
Resumo:
The water content dynamics in the upper soil surface during evaporation is a key element in land-atmosphere exchanges. Previous experimental studies have suggested that the soil water content increases at the depth of 5 to 15 cm below the soil surface during evapo- ration, while the layer in the immediate vicinity of the soil surface is drying. In this study, the dynamics of water content profiles exposed to solar radiative forcing was monitored at a high temporal resolution using dielectric methods both in the presence and absence of evaporation. A 4-d comparison of reported moisture content in coarse sand in covered and uncovered buckets using a commercial dielectric-based probe (70 MHz ECH2O-5TE, Decagon Devices, Pullman, WA) and the standard 1-GHz time domain reflectometry method. Both sensors reported a positive correlation between temperature and water content in the 5- to 10-cm depth, most pronounced in the morning during heating and in the afternoon during cooling. Such positive correlation might have a physical origin induced by evaporation at the surface and redistribution due to liquid water fluxes resulting from the temperature- gradient dynamics within the sand profile at those depths. Our experimental data suggest that the combined effect of surface evaporation and temperature-gradient dynamics should be considered to analyze experimental soil water profiles. Additional effects related to the frequency of operation and to protocols for temperature compensation of the dielectric sensors may also affect the probes' response during large temperature changes.
Resumo:
In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.
Resumo:
Cooked vegetables are commonly used in the preparation of ready-to-eat foods. The integration of cooking and cooling of carrots and vacuum cooling in a single vessel is described in this paper. The combination of different methods of cooking and vacuum cooling was investigated. Integrated processes of cooking and vacuum cooling in a same vessel enabled obtaining cooked and cooled carrots at the final temperature of 10 ºC, which is adequate for preparing ready-to-eat foods safely. When cooking and cooling steps were performed with the samples immersed in boiling water, the effective weight loss was approximately 3.6%. When the cooking step was performed with the samples in boiling water or steamed, and the vacuum cooling was applied after draining the boiling water, water loss ranged between 15 and 20%, which caused changes in the product texture. This problem can be solved with rehydration using a small amount of sterile cold water. The instrumental textural properties of carrots samples rehydrated at both vacuum and atmospheric conditions were very similar. Therefore, the integrated process of cooking and vacuum cooling of carrots in a single vessel is a feasible alternative for processing such kind of foods.
Resumo:
Brock's Junior Varsity crew of '76 pictured looking appropriately worn out after practice. Their shirts read "Brock Crew '76: Up Y'Oars" Cox: Kari Syri, Stroke: Ed Cooling, Ralph Martens, Paul Kivell, Don Rickers, Sean Stackwood, Clark Wochis, Jack Pyke, Bow: Bruce Petrie, Coach (the leg on the boat): Tony Biernacki.
Resumo:
The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.
Resumo:
A combination of satellite data, reanalysis products and climate models are combined to monitor changes in water vapour, clear-sky radiative cooling of the atmosphere and precipitation over the period 1979-2006. Climate models are able to simulate observed increases in column integrated water vapour (CWV) with surface temperature (Ts) over the ocean. Changes in the observing system lead to spurious variability in water vapour and clear-sky longwave radiation in reanalysis products. Nevertheless all products considered exhibit a robust increase in clear-sky longwave radiative cooling from the atmosphere to the surface; clear-sky longwave radiative cooling of the atmosphere is found to increase with Ts at the rate of ~4 Wm-2 K-1 over tropical ocean regions of mean descending vertical motion. Precipitation (P) is tightly coupled to atmospheric radiative cooling rates and this implies an increase in P with warming at a slower rate than the observed increases in CWV. Since convective precipitation depends on moisture convergence, the above implies enhanced precipitation over convective regions and reduced precipitation over convectively suppressed regimes. To quantify this response, observed and simulated changes in precipitation rate are analysed separately over regions of mean ascending and descending vertical motion over the tropics. The observed response is found to be substantially larger than the model simulations and climate change projections. It is currently not clear whether this is due to deficiencies in model parametrizations or errors in satellite retrievals.
Resumo:
The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.
Resumo:
The distribution and variability of water vapor and its links with radiative cooling and latent heating via precipitation are crucial to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV) and additional variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) are utilized to quantify the spatial and temporal variability in tropical water vapor over the period 1979–2001. The moisture variability is partitioned between dynamical and thermodynamic influences and compared with variations in precipitation provided by the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The spatial distribution of CWV is strongly determined by thermodynamic constraints. Spatial variability in CWV is dominated by changes in the large-scale dynamics, in particular associated with the El Niño–Southern Oscillation (ENSO). Trends in CWV are also dominated by dynamics rather than thermodynamics over the period considered. However, increases in CWV associated with changes in temperature are significant over the equatorial east Pacific when analyzing interannual variability and over the north and northwest Pacific when analyzing trends. Significant positive trends in CWV tend to predominate over the oceans while negative trends in CWV are found over equatorial Africa and Brazil. Links between changes in CWV and vertical motion fields are identified over these regions and also the equatorial Atlantic. However, trends in precipitation are generally incoherent and show little association with the CWV trends. This may in part reflect the inadequacies of the precipitation data sets and reanalysis products when analyzing decadal variability. Though the dynamic component of CWV is a major factor in determining precipitation variability in the tropics, in some regions/seasons the thermodynamic component cancels its effect on precipitation variability.
Resumo:
We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions and examine its impact with a coupled ocean-atmosphere climate model. If sufficiently large amounts of water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the tropospheric climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer than the residence time of aerosol in the stratosphere. In particular, northern hemisphere high latitude cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883. We hypothesize that moist coignimbrite plumes caused by pyroclastic flows travelling over ocean rather than land, resulting from an eruption close enough to the ocean, might provide the additional source of stratospheric water vapour.
Resumo:
This study uses an analytical model, based on the cooling-to-space approximation, and a fixed dynamical heating model to investigate the structure of the stratospheric cooling that occurs in response to a uniform increase in stratospheric water vapour (SWV). At all latitudes, the largest cooling occurs in the lower stratosphere and decreases in magnitude with height. The cooling is strongly enhanced in the Extratropics compared to the Tropics. This is markedly different to the case of an increase in CO2, which causes maximum cooling near the stratopause and a small warming in the tropical lower stratosphere. The qualitative differences in the structure of the cooling can be explained by the smaller opacity of water vapour bands in the stratosphere compared to CO2. The small opacity means that the magnitude of the initial heating rate perturbation only decreases by a factor of four between the upper and lower stratosphere for a SWV perturbation. Therefore, to balance the heating rate perturbation, the largest temperature change is required in the lower stratosphere. Increasing the background concentration of SWV causes the water vapour bands to become more opaque. For a SWV perturbation applied to a background SWV concentration ≥30 ppmv, the heating rate perturbation and temperature change structurally resemble those from an increase in CO2. In the Extratropics, the lower height of the tropopause is found to cause the enhancement in the cooling at those latitudes. By controlling the depth of atmosphere which adjusts to the SWV perturbation, the tropopause height affects the net exchange of radiation between the layers in the stratosphere as they cool. The latitudinal gradient in upwelling infrared radiation at the tropopause and variations in the background temperature are found to have only a minor effect on the structure of the stratospheric temperature response to a change in SWV.