869 resultados para Converter efficiency
Resumo:
The use of techniques such as envelope tracking (ET) and envelope elimination and restoration (EER) can improve the efficiency of radio frequency power amplifiers (RFPA). In both cases, high-bandwidth DC/DC converters called envelope amplifiers (EA) are used to modulate the supply voltage of the RFPA. This paper addresses the analysis and design of a modified two-phase Buck converter optimized to operate as EA. The effects of multiphase operation on the tracking capabilities are analyzed. The use of a fourth-order output filter is proposed to increase the attenuation of the harmonics generated by the PWM operation, thus allowing a reduction of the ratio between the switching frequency and the converter bandwidth. The design of the output filter is addressed considering envelope tracking accuracy and distortion caused by the side bands arising from the nonlinear modulation process. Finally, the proposed analysis and design methods are supported by simulation results, as well as demonstrated by experiments obtained using two 100-W, 10-MHz, two-phase Buck EAs capable of accurately tracking a 1.5-MHz bandwidth OFDM signal.
Resumo:
This paper presents some power converter architectures and circuit topologies, which can be used to achieve the requirements of the high performance transformer rectifier unit in aircraft applications, mainly as: high power factor with low THD, high efficiency and high power density. The voltage and the power levels demanded for this application are: three-phase line-to-neutral input voltage of 115 or 230V AC rms (360 – 800Hz), output voltage of 28V DC or 270V DC(new grid value) and the output power up to tens of kilowatts.
Resumo:
Wireless power transfer (WPT) is an emerging technology with an increasing number of potential applications to transfer power from a transmitter to a mobile receiver over a relatively large air gap. However, its widespread application is hampered due to the relatively low efficiency of current Wireless power transfer (WPT) systems. This study presents a concept to maximize the efficiency as well as to increase the amount of extractable power of a WPT system operating in nonresonant operation. The proposed method is based on actively modifying the equivalent secondary-side load impedance by controlling the phase-shift of the active rectifier and its output voltage level. The presented hardware prototype represents a complete wireless charging system, including a dc-dc converter which is used to charge a battery at the output of the system. Experimental results are shown for the proposed concept in comparison to a conventional synchronous rectification approach. The presented optimization method clearly outperforms state-of-the-art solutions in terms of efficiency and extractable power.
Resumo:
En esta tesis se analiza el sistema de tracción de un vehículo eléctrico de batería desde el punto de vista de la eficiencia energética y de la exposición a campos magnéticos por parte de los pasajeros (radiación electromagnética). Este estudio incluye tanto el sistema de almacenamiento de energía como la máquina eléctrica, junto con la electrónica de potencia y los sistemas de control asociados a ambos. Los análisis y los resultados presentados en este texto están basados en modelos matemáticos, simulaciones por ordenador y ensayos experimentales a escala de laboratorio. La investigación llevada a cabo durante esta tesis tuvo siempre un marcado enfoque industrial, a pesar de estar desarrollada en un entorno de considerable carácter universitario. Las líneas de investigación acometidas tuvieron como destinatario final al diseñador y al fabricante del vehículo, a pesar de lo cual algunos de los resultados obtenidos son preliminares y/o excesivamente académicos para resultar de interés industrial. En el ámbito de la eficiencia energética, esta tesis estudia sistemas híbridos de almacenamiento de energía basados en una combinación de baterías de litio y supercondensadores. Este tipo de sistemas son analizados desde el punto de vista de la eficiencia mediante modelos matemáticos y simulaciones, cuantificando el impacto de ésta en otros parámetros tales como el envejecimiento de las baterías. Respecto a la máquina eléctrica, el estudio se ha centrado en máquinas síncronas de imanes permanentes. El análisis de la eficiencia considera tanto el diseño de la máquina como la estrategia de control, dejando parcialmente de lado el inversor y la técnica de modulación (que son incluidos en el estudio como fuentes adicionales de pérdidas, pero no como potenciales fuentes de optimización de la eficiencia). En este sentido, tanto la topología del inversor (trifásico, basado en IGBTs) como la técnica de modulación (control de corriente en banda de histéresis) se establecen desde el principio. El segundo aspecto estudiado en esta tesis es la exposición a campos magnéticos por parte de los pasajeros. Este tema se enfoca desde un punto de vista predictivo, y no desde un punto de vista de diagnóstico, puesto que se ha desarrollado una metodología para estimar el campo magnético generado por los dispositivos de potencia de un vehículo eléctrico. Esta metodología ha sido validada mediante ensayos de laboratorio. Otros aspectos importantes de esta contribución, además de la metodología en sí misma, son las consecuencias que se derivan de ella (por ejemplo, recomendaciones de diseño) y la comprensión del problema proporcionada por esta. Las principales contribuciones de esta tesis se listan a continuación: una recopilación de modelos de pérdidas correspondientes a la mayoría de dispositivos de potencia presentes en un vehículo eléctrico de batería, una metodología para analizar el funcionamiento de un sistema híbrido de almacenamiento de energía para aplicaciones de tracción, una explicación de cómo ponderar energéticamente los puntos de operación par-velocidad de un vehículo eléctrico (de utilidad para evaluar el rendimiento de una máquina eléctrica, por ejemplo), una propuesta de incluir un convertidor DC-DC en el sistema de tracción para minimizar las pérdidas globales del accionamiento (a pesar de las nuevas pérdidas introducidas por el propio DC-DC), una breve comparación entre dos tipos distintos de algoritmos de minimización de pérdidas para máquinas síncronas de imanes permanentes, una metodología predictiva para estimar la exposición a campos magnéticos por parte de los pasajeros de un vehículo eléctrico (debida a los equipos de potencia), y finalmente algunas conclusiones y recomendaciones de diseño respecto a dicha exposición a campos magnéticos. ABSTRACT This dissertation analyzes the powertrain of a battery electric vehicle, focusing on energy efficiency and passenger exposure to electromagnetic fields (electromagnetic radiation). This study comprises the energy storage system as well as the electric machine, along with their associated power electronics and control systems. The analysis and conclusions presented in this dissertation are based on mathematical models, computer simulations and laboratory scale tests. The research performed during this thesis was intended to be of industrial nature, despite being developed in a university. In this sense, the work described in this document was carried out thinking of both the designer and the manufacturer of the vehicle. However, some of the results obtained lack industrial readiness, and therefore they remain utterly academic. Regarding energy efficiency, hybrid energy storage systems consisting in lithium batteries, supercapacitors and up to two DC-DC power converters are considered. These kind of systems are analyzed by means of mathematical models and simulations from the energy efficiency point of view, quantifying its impact on other relevant aspects such as battery aging. Concerning the electric machine, permanent magnet synchronous machines are studied in this work. The energy efficiency analysis comprises the machine design and the control strategy, while the inverter and its modulation technique are taken into account but only as sources of further power losses, and not as potential sources for further efficiency optimization. In this sense, both the inverter topology (3-phase IGBT-based inverter) and the switching technique (hysteresis current control) are fixed from the beginning. The second aspect studied in this work is passenger exposure to magnetic fields. This topic is approached from the prediction point of view, rather than from the diagnosis point of view. In other words, a methodology to estimate the magnetic field generated by the power devices of an electric vehicle is proposed and analyzed in this dissertation. This methodology has been validated by laboratory tests. The most important aspects of this contribution, apart from the methodology itself, are the consequences (for instance, design guidelines) and the understanding of the magnetic radiation issue provided by it. The main contributions of this dissertation are listed next: a compilation of loss models for most of the power devices found in a battery electric vehicle powertrain, a simulation-based methodology to analyze hybrid energy storage performance in traction applications, an explanation of how to assign energy-based weights to different operating points in traction drives (useful when assessing electrical machine performance, for instance), a proposal to include one DC-DC converter in electric powertrains to minimize overall power losses in the system (despite the new losses added by the DC-DC), a brief comparison between two kinds of loss-minimization algorithms for permanent magnet synchronous machines in terms of adaptability and energy efficiency, a predictive methodology to estimate passenger magnetic field exposure due to power devices in an electric vehicle, and finally some useful conclusions and design guidelines concerning magnetic field exposure.
Resumo:
New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a converter-per-panel approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cuk converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cuk converters are always at an efficiency or alternatively cost disadvantage.
Resumo:
New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single DC-AC inverter connected to a series string of PV modules, or many small DC-AC inverters which connect one or two modules directly to the AC grid. This paper shows that a "converter-per-module" approach offers many advantages including individual module maximum power point tracking, which gives great flexibility in module layout, replacement, and insensitivity to shading; better protection of PV sources, and redundancy in the case of source or converter failure; easier and safer installation and maintenance; and better data gathering. Simple nonisolated per-module DC-DC converters can be series connected to create a high voltage string connected to a simplified DC-AC inverter. These advantages are available without the cost or efficiency penalties of individual DC-AC grid connected inverters. Buck, boost, buck-boost and Cuk converters are possible cascadable converters. The boost converter is best if a significant step up is required, such as with a short string of 12 PV modules. A string of buck converters requires many more modules, but can always deliver any combination of module power. The buck converter is the most efficient topology for a given cost. While flexible in voltage ranges, buck-boost and Cuk converters are always at an efficiency or alternatively cost disadvantage.
Resumo:
The advent of the harmonic neutralised shunt Converter Compensator as a practical means of reactive power compensation in power transmission systems has cleared ground for wider application of this type of equipment. An experimental 24-pulse voltage sourced convector has been successfully applied in controlling the terminal power factor of a 1.5kW, 240V three phase cage rotor induction motor, whose winding has been used in place of the usual phase shifting transformers. To achieve this, modifications have been made to the conventional stator winding of the induction machine. These include an unconventional phase spread and facilitation of compensator connections to selected tapping points between stator coils to give a three phase winding with a twelve phase connection to the twenty four pulse converter. Theoretical and experimental assessments of the impact of these modifications and attachment of the compensator have shown that there is a slight reduction in the torque developed at a given slip and in the combined system efficiency. There is also an increase in the noise level, also a consequence of the harmonics. The stator leakage inductance gave inadequate coupling reactance between the converter and the effective voltage source, necessitating the use of external inductors in each of the twelve phases. The terminal power factor is fully controllable when the induction machine is used either as a motor or as a generator.
Resumo:
A proposal to increase the existing residential LV grid voltage from 230 V has been made in order to increase existing network capacity. A power-electronic AC-AC converter is then used to provide 230 V at each property. Several constraints such as temperature rise at the converter location lead to a converter design requiring very high efficiency. In this paper results from a recent feasibility study in terms of LV network capacity increase are presented along with the design and testing of a SiC based 1 kW, AC/AC prototype module, which forms the basis of a much larger 15 kW multi-module converter.
Resumo:
The utilization of solar energy by photovoltaic (PV) systems have received much research and development (R&D) attention across the globe. In the past decades, a large number of PV array have been installed. Since the installed PV arrays often operate in harsh environments, non-uniform aging can occur and impact adversely on the performance of PV systems, especially in the middle and late periods of their service life. Due to the high cost of replacing aged PV modules by new modules, it is appealing to improve energy efficiency of aged PV systems. For this purpose, this paper presents a PV module reconfiguration strategy to achieve the maximum power generation from non-uniformly aged PV arrays without significant investment. The proposed reconfiguration strategy is based on the cell-unit structure of PV modules, the operating voltage limit of gird-connected converter, and the resulted bucket-effect of the maximum short circuit current. The objectives are to analyze all the potential reorganization options of the PV modules, find the maximum power point and express it in a proposition. This proposition is further developed into a novel implementable algorithm to calculate the maximum power generation and the corresponding reconfiguration of the PV modules. The immediate benefits from this reconfiguration are the increased total power output and maximum power point voltage information for global maximum power point tracking (MPPT). A PV array simulation model is used to illustrate the proposed method under three different cases. Furthermore, an experimental rig is built to verify the effectiveness of the proposed method. The proposed method will open an effective approach for condition-based maintenance of emerging aging PV arrays.
Resumo:
This paper proposes a novel dc-dc converter topology to achieve an ultrahigh step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional dc-dc converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W dc-dc converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and dc power transmission.
Resumo:
System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.
Resumo:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.
Resumo:
In modern power electronics equipment, it is desirable to design a low profile, high power density, and fast dynamic response converter. Increases in switching frequency reduce the size of the passive components such as transformers, inductors, and capacitors which results in compact size and less requirement for the energy storage. In addition, the fast dynamic response can be achieved by operating at high frequency. However, achieving high frequency operation while keeping the efficiency high, requires new advanced devices, higher performance magnetic components, and new circuit topology. These are required to absorb and utilize the parasitic components and also to mitigate the frequency dependent losses including switching loss, gating loss, and magnetic loss. Required performance improvements can be achieved through the use of Radio Frequency (RF) design techniques. To reduce switching losses, resonant converter topologies like resonant RF amplifiers (inverters) combined with a rectifier are the effective solution to maintain high efficiency at high switching frequencies through using the techniques such as device parasitic absorption, Zero Voltage Switching (ZVS), Zero Current Switching (ZCS), and a resonant gating. Gallium Nitride (GaN) device technologies are being broadly used in RF amplifiers due to their lower on- resistance and device capacitances compared with silicon (Si) devices. Therefore, this kind of semiconductor is well suited for high frequency power converters. The major problems involved with high frequency magnetics are skin and proximity effects, increased core and copper losses, unbalanced magnetic flux distribution generating localized hot spots, and reduced coupling coefficient. In order to eliminate the magnetic core losses which play a crucial role at higher operating frequencies, a coreless PCB transformer can be used. Compared to the conventional wire-wound transformer, a planar PCB transformer in which the windings are laid on the Printed Board Circuit (PCB) has a low profile structure, excellent thermal characteristics, and ease of manufacturing. Therefore, the work in this thesis demonstrates the design and analysis of an isolated low profile class DE resonant converter operating at 10 MHz switching frequency with a nominal output of 150 W. The power stage consists of a class DE inverter using GaN devices along with a sinusoidal gate drive circuit on the primary side and a class DE rectifier on the secondary side. For obtaining the stringent height converter, isolation is provided by a 10-layered coreless PCB transformer of 1:20 turn’s ratio. It is designed and optimized using 3D Finite Element Method (FEM) tools and radio frequency (RF) circuit design software. Simulation and experimental results are presented for a 10-layered coreless PCB transformer operating in 10 MHz.
Resumo:
Nowadays, there is a boom in the use of electrification. Electric vehicles are gaining interest worldwide due to various factors, including climate and environmental awareness. In this thesis, a step-down isolated power supply for electric tractors is investigated, specifically the phase-shifted full-bridge (PSFB) DC-DC with synchronous rectification and zero-voltage switching (ZVS). This converter was selected for its high-power capacity with high efficiency. A 3500 W PSFB converter with peak current control (PCCM) is designed and modeled in MATLAB. The input voltage range is from 550 V to 820 V and the output voltage range is limited to 9 V to 16 V with a maximum output current of 250 A. All components were commercially designed and selected, including magnetics for the high-frequency transformer and inductors, taking into account loss calculations. Zero voltage switching for the lagging leg is achieved at 13% to 100% load. The proven efficiency of the converter is around 90
Resumo:
The present work describes the different stages of design, implementation, and validation procedures for an interleaved DC-DC boost converter intended for the 2022 Futura, a fuel cell-powered racing catamaran developed by the UniBoAT team. The main goal of the entire design has been the significant reduction of the weight of the converter by removing heat sinks and reducing component size while increasing its efficiency by adopting high-end power switches and the interleaved architecture operated with a synchronous control strategy. The obtained converter has been integrated into the structure containing the fuel cell stack obtaining a fully integrated system. The realized device has been based on an interleaved architecture with six phases controlled digitally through the average current mode control. The design has been validated through simulations carried out using the software LT-Spice, whereas experimental validations have been performed by means of laboratory bench tests and on-field tests. Detailed thermal and efficiency analyses are provided with the bench tests under the two synchronous and non-synchronous operating modes and with the adoption of the phase shedding technique. The prototype implementation and its performance in real operating conditions are also discussed. Eventually, it is underlined as the designed converter can be used in other applications requiring a voltage-controlled boost converter.