874 resultados para Controlled delivery system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)-the causative agents of rheumatic fever and subsequent rheumatic heart disease-was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of dimethyl dioctadecyl ammonium bromide (DDA) and the synthetic cord factor trehalose dibehenate (TDB) with Ag85B-ESAT-6 (H1 fusion protein) has been found to promote strong protective immune responses against Mycobacterium tuberculosis. The development of a vaccine formulation that is able to facilitate the requirements of sterility, stability and generation of a vaccine product with acceptable composition, shelf-life and safety profile may necessitate selected alterations in vaccine formulation. This study describes the implementation of a sterilisation protocol and the use of selected lyoprotective agents in order to fulfil these requirements. Concomitantly, close analysis of any alteration in physico-chemical characteristics and parameters of immunogenicity have been examined for this promising DDA liposome-based tuberculosis vaccine. The study addresses the extensive guidelines on parameters for non-clinical assessment, suitable for liposomal vaccines and other vaccine delivery systems issued by the World Health Organisation (WHO) and the European Medicines Agency (EMEA). Physical and chemical stability was observed following alteration in formulations to include novel cryoprotectants and radiation sterilisation. Immunogenicity was maintained following these alterations and even improved by modification with lysine as the cryoprotective agent for sterilised formulations. Taken together, these results outline the successful alteration to a liposomal vaccine, representing improved formulations by rational modification, whilst maintaining biological activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultimate aim of this project was to design new biomaterials which will improve the efficiency of ocular drug delivery systems. Initially, it was necessary to review the information available on the nature of the tear fluid and its relationship with the eye. An extensive survey of the relevant literature was made. There is a common belief in the literature that the ocular glycoprotein, mucin, plays an important role in tear film stability, and furthermore, that it exists as an adherent layer covering the corneal surface. If this belief is true, the muco-corneal interaction provides the ideal basis for the development of sustained release drug delivery. Preliminary investigations were made to assess the ability of mucin to adhere to polymer surfaces. The intention was to develop a synthetic model which would mimic the supposed corneal/mucin interaction. Analytical procedures included the use of microscopy (phase contrast and fluorescence), fluorophotometry, and mucin-staining dyes. Additionally, the physical properties of tears and tear models were assessed under conditions mimicking those of the preocular environment, using rheological and tensiometric techniques. The wetting abilities of these tear models and opthalmic formulations were also investigated. Tissue culture techniques were employed to enable the surface properties of the corneal surface to be studied by means of cultured corneal cells. The results of these investigations enabled the calculation of interfacial and surface characteristics of tears, tear models, and the corneal surface. Over all, this work cast doubt on the accepted relationship of mucin with the cornea. A corneal surface model was designed, on the basis of the information obtained during this project, which would possess similar surface chemical properties (i.e. would be biomimetic) to the more complex original. This model, together with the information gained on the properties of tears and solutions intended for ocular instillation, could be valuable in the design of drug formulations with enhanced ocular retention times. Furthermore, the model itself may form the basis for the design of an effective drug-carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adjuvanticity of liposomes can be directed through formulation to develop a safe yet potent vaccine candidate. With the addition of the cationic lipid dimethyldioctadecylammonium bromide (DDA) to stable neutral distearoylphosphatidylcholine (DSPC):cholesterol (Chol) liposomes, vesicle size reduces while protein entrapment increases. The addition of the immunomodulator, trehalose 6,6-dibehenate (TDB) to either the neutral or cationic liposomes did not affect the physiochemical characteristics of these liposome vesicles. However, the protective immune response, as indicated by the amount of IFN-? production, increases considerably when TDB is present. High levels of IFN-? were observed for cationic liposomes; however, there was a marked reduction in IFN-? release over time. Conversely, for neutral liposomes containing TDB, although the initial amount of IFN-? was slightly lower than the cationic equivalent, the overall protective immune responses of these neutral liposomes were effectively maintained over time, generating good levels of protection. To that end, although the addition of DSPC and Chol reduced the protective immunity of DDA:TDB liposomes, relatively high protection was observed for the neutral counterpart, DSPC:Chol:TDB, which may offer an effective neutral alternative to the DDA:TDB cationic system, especially for the delivery of either zwitterionic (neutral) or cationic molecules or antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Target-specific delivery has become an integral area of research in order to increase bioavailability and reduce the toxic effects of drugs. As a drug-delivery option, trigger-release liposomes offer sophisticated targeting and greater control-release capabilities. These are broadly divided into two categories; those that utilise the local environment of the target site where there may be an upregulation in certain enzymes or a change in pH and those liposomes that are triggered by an external physical stimulus such as heat, ultrasound or light. These release mechanisms offer a greater degree of control over when and where the drug is released; furthermore, targeting of diseased tissue is enhanced by incorporation of target-specific components such as antibodies. This review aims to show the development of such trigger release liposome systems and the current research in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(e-caprolactone) (PCL) is biocompatible, non-immunogenic and non-toxic, and slowly degrades, allowing sufficient time for tissue regeneration. PCL has the potential for application in bone and cartilage repair as it may provide the essential structure required for bone regeneration, however, an ideal scaffold system is still undeveloped. PCL fibres were prepared using the gravity spinning technique, in which collagen was either incorporated into or coated onto the 'as-spun' fibres, in order to develop novel biodegradable polymer fibres which will effectively deliver collagen and support the attachment and proliferation of human osteoblast (HOB) cells for bone regeneration. The physical and mechanical characteristics and cell fibre interactions were analysed. The PCL fibres were found to be highly flexible and inclusion of collagen did not alter the mechanical properties of PCL fibres. Overall, HOB cells were shown to effectively adhere and proliferate on all fibre platforms tested, although proliferation rates were enhanced by surface coating PCL fibres with collagen compared to PCL fibres incorporating collagen and PCL-only fibres. These findings highlight the potential of using gravity spun PCL fibres as a delivery platform for extracellular matrix proteins, such as collagen, in order to enhance cell adherence and proliferation for tissue repair.